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ABSTRACT

An optimization system based on the finitc clement code CSM Testbed and
the optimization program ADS is described. The optimization system can be used
to obtain minimum-weight designs of composite stiffened structures. Ply thick-
nesses, ply orientations, and stiffener heights can be used as design variables.
Buckling, displacement, and material failure constraints can be imposed on the
design. The system is used to conduct a design study of geodesically stiffened
shells. For comparison purposes, optimal designs of unstiffened shells and shells
stiffened by rings and stringers are also obtained. Trends in the design of
geodesically stiffened shells are identified. An approach to include local stress
concentrations during the design optimization process is then presented. The
method is based on a global/local analysis technique. It employs spline interpo-
lation functions to determine displacements and rotations from a global model
which are used as “boundary conditions” for the local model. The organization of
the strategy in the context of an optimization process is described. The method is

validated with an example.
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Chapter 1
Introduction

In the aerospace industry, the need for weight efficient structures has led to the
adoption of the stiffening concept for many structural components. The use of stiffeners
results in a significant increase of stiffness for a minimum amount of added material.
In most metallic structures, stiffening is provided by an array of orthogonal or near
orthogonal members fabricated indebcndently of the skin and assembled with fasteners.
With the advent of composite materials, designers have instinctively been using the same
practice to stiffen flat and cylindrical panels.

However, various considerations, mainly related to the cost-effective manufacturing
of composite structures, suggest that other stiffening concepts might be structurally as
efficient and more economical to manufacture. In recent years, concepts that employ stiff-
eners following the geodesic lines (a geodesic line is the shortest line between two points
that lies in a given surface) have been considered, and some examples of geodesically
stiffened structures are shown in Fig. 1.1. The main advantage of this stiffening pattern,
compared to more conventional arrangements, is that geodesically stiffened structures
can be manufactured using the filament winding technique, a cost-effective process that
offers enormous potential in terms of reductions in number of parts and fasteners. This
is particularly true for aircraft fuselage structures which are large continuous cylindrical
shapes that lend themselves particularly well to filament winding.

One variant of the geodesic stiffening concept that has received a great deal of atten-
tion in the case of composite structures is the “isogrid” pattern [1-2]. With this concept,
stiffening is provided by an array of stiffeners that form equilateral triangles. Research

on isogrid-stiffened configurations has shown that the multiple load paths resulting from

1
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the redundancy of the stiffening create a highly damage-tolerant structure. Also, the
equilateral triangular grid of stiffeners displays an overall isotropic nature. Therefore,
many existing analytical solutions based on a smeared representation of the skin-stiffener
assembly can still be used. However, it has been noted [i] that for certain applications,
the uniformity of configuration and the isotropic stiffening may result in weight penalties.
Hence, the\ need to study the geodesic stiffening concept which allows the stiffeners to
intersect at an arbitrary angle. As such, this additional freedom provides the designer
with more flexibility, while retaining all the benefits of the isogrid stiffening pattern in
terms of structural efficiency, ease of manufacturing, and damage tolerance.

Although the geodesic stiffening concept appears promising, more work must be
done to better measure its potential to become a valid alternative to the more traditional
stiffening concepts. This is the subject of the present study which considers the optimal
design of geodesically stiffened composite cylindrical shells. The overall objective of
this work is to compare the efficiency of the geodesically stiffened concept to more
traditional stiffening patterns in the case of aircraft fuselages. The specific goals are:

1. To develop a finite element based optimization system that can be used to design
complex structural configurations such as geodesically stiffened shells subjected to
combined loading conditions.

2. To characterize the structural behavior of geodesically stiffened cylindrical shells.

3. To obtain optimal designs for different unstiffened and stiffened shell configura-
tions subjected to axial compression, torsion and a combination of compression and
torsion.

4. To compare the optimal designs obtained with the different configurations, as well
as identify trends in the design of geodesically stiffened shells.

5. To develop a methodology for the incorporation of local stress constraints into a

design process.



The organization of the remainder of this dissertation is as follows. First, the con-
figurations that will be considered in the present study are presented in Chapter 2 along
with a review of the previous work that has been published on the analysis and design
of geodesically stffened shells. Then, in Chapter 3, the new optimization system that
has been developed in the course of this research initiative is presented. Due to the com-
plex geometry of the structures that are cdnéidered in the present study, the optimization
system has been built around a finite element code. Until recently, the incorporation
of this method into an optimization process was considered 100 expensive due to the
large number of analyses required to achieve the optimal configuration. However, recent
developments in the fields of structural optimization, numerical analysis and computer
hardware, as well as the versaulity of the resulting design tool tend to make this approach
more and more attractive.

The presentation of the optimization system is followed in Chapter 4 by the de-
scription of the models that will be used in the design of the unstiffened, longitudinally
and ring stiffened, as well as geodesically stiffened shell configurations that will be
considered in the present study. For several configurations, the analysis of a nominal
design is performed and mesh refinement requirements are investigated. Also, character-
istics of the behavior of geodesically stiffened shells under static loading are highlighted.
Then, in Chapter 5, the results of the design study are presented and used to identify
trends and evaluate the efficiency of the geodesic stiffening pattern compared to the other
configurations studied.

In Chapter 6, the modificatons made to the optimization system presented to in-
corporate a global/local analysis strategy into the design process are presented and the
resulting implementation is validated on an example. Results of the research work are

summarized in Chapter 7, and concluding remarks are provided.



Chapter 2
Design of Geodesically Stiffened Shells

As mentioned in the introduction, the application of the geodesic stiffening concept
to composite structural components results in a damage tolerant structure that can also be
tailored and cost-effectively manufactured. To investigate the concept further and com-
pare the efficiency of this stiffening pattern to more conventional stiffener arrangements,
a detailed design study of a portion of an aircraft fuselage is performed. In Section 2.1,
the geometry and loads for a typical aircraft fuselage are introduced. Previous works
published on the analysis and design of geodesically stiffened shells are reviewed in

Section 2.2. Finally, in Section 2.3, the scope of the present study is established.
2.1 Geodesically Stiffened Cylindrical Shells

The application of the geodesic stiffening concept to aircraft fuselages is promising.
This is due to the automated filament winding process that can be used to cost-effectively
manufacture such structures. The portion of the fuselage under consideration is similar to
the section of a C-141 aircraft immediately after the wing box. The design of a fuselage
due to flight maneuvers, cabin pressurization, and forces due to engines, fuel load, etc ...
result in bending, twisting and membrane stretching of the fuselage structure.

For the present study, the fuselage is modelled as a circular cylinder of 100 in
length and 170 in diameter. The cylinder incorporates a grid of integral blade stiffeners
of constant rectangular cross-section. In view of the proposed manufacturing technique,
which includes an automated winding process, the stiffeners are assumed to be composed

of unidirectional material oriented along each stiffener axis. Because of aerodynamic

5



requirements, all the configurations studied are internally stiffened. Regarding bound-
ary condidons, the actual degree of elastic restraint against edge rotation and expansion
provided by the surrounding structure is unknown and no doubt complex. To provide
realistic restraints, a ring of fixed dimensions (0.2 in thick and 1.5 in high) has been
placed at each end of the cylinder. The role of the rings is to restrain the radial expan-
sion and roiaﬁon abdﬂt the circumferénﬁal direction. Further discussion of the specific
boundary conditions used for each configuration and load case may be found in Secton
4.2. Finally, the applied loads considered are uniform axial compression, torsion, and

combined axial compression and torsion. All the loadings are introduced by specifying

nonzero displaécment boundary conditions for all the skin and ring nodes located at each

end of the shell. Specifying the axial displacement of these nodes results in a consider-
able amount of rotational restraint with respect to the circumferental direction at each
end of the shell.

Three configurations are considered for the fuselage: unstffened shell, shell stiffened
by rings and stringers (referred to as the “conventionally stiffened” configuration in the
remainder of the present study), and geodesically stiffened shell. Because fuselage struc-
tures are typically made of a thin skin reinforced by stiffeners, their buckling resistance
is a major concern. This is illustrated by several of the papers that are reviewed in the
next section as well as by the design study results that will be presented in Chapter 5.
The performance of the geodesically stiffened arrangement will be evaluated by direct
comparison to the unstiffened, a_nd conventionally stiffened shells. The terminology

associated with the analysis and the design of stiffened shells is shown in Fig. 2.1.
2.2 Literature Review

In this section, papers published on the analysis and the design of geodesically
stiffened structures are reviewed. Papers dealing with the analysis and the design of

6
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unstiffened and conventionally stiffened shells are not discussed here. Results of an
optimal design of unstiffened cylindrical shells are given in Ref. [3]. A brief review of
the vast literature on the design of stffened shells is given by Gajewski and Zyczkowski
(4] who also give an extensive bibliography on the subjéct.

To date, only a few pagcrs have been publisﬁed on the subject of geodesically
stiffened éhells. In many of thesé p:ipefs', simple computational strategies were used.
For example, in Refs. [5-6], the properties of the stiffeners were averaged over the
spacing so that the discrete nature of the stiffeners was neglected.

One of the earliest papers ;(ﬂ)njsrirdmfihn g the gcodgsiigtstiffenin g concept is by Meyer [5]
who studied 45° integrally milled-out stiffeners. The primary motivation for considering
this type of stiffening was to exclude the buckling modes that occur between hoop
reinforcements for ring and swringer stiffened shells. The material was isotropic and the
stiffening was assumed to be continuohsly distributed over the shell reference surface.
Test results were presented to verify the buckling loads obtained and no design study
was performed.

In 1969, Soong [6] derived buckling equations for cylinders made of isotropic mate-
rial and with stiffeners inclined at an arbitrary angle with respect to the axis of the shell.
In his case, the primary motivation for the study was also related to the design of more
efficient structures. In his formulation, discreteness of the stiffeners was also neglected.
Several comparisons between conventionally and spirally stiffened shells using arbitrarily
chosen dimensions were presented. Correlation of the theory with 12 test results for 45°
stiffened cylinders under bending and compression was presented. Based on numerical
results, the author concluded that, on equal stiffener weight or equal buckling strength
bases, the spirally stiffened cylinders were about equally efficient compared to the ring
and stringer stiffened cylinders for axial compression and pure bending loads. Under

torsion and pressure loads, however, the spirally stiffened cylinders were superior.
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Also in 1969, Lee and Lu [7] presented a study on the general instability of inclined-
stiffened isowopic cylinders under bending. For the first time, the discrete nature of the
stiffeners was considered. They showed that the optimum inclination varies with the
rigidity of the stiffeners, and that theoretically, the buékling load should increase with
the rigidity of these members. However, test data showed that the buckling strength
increased little as the rigidity of the stiffeners became large. This discrepancy was
atributed to imperfections in the more strongly stiffened cylinders which likely produced
local rather that global buckling modes.

In 1970, Pappas and Amba-Rao [8] noted that although Soong’s comparisons [6]
may indicate correct trends, they were not based on minimum weight designs. Conse-
quently, to allow for a more realistic evaluation of the different stiffener configurations,
a mathemarical programming method was used to compute optimal designs for isotropic
ring and stringer stiffened shells as well as spirally stiffened shells. The shells were
subjected to a uniform compressive loading and a lateral pressure. Skin and stiffener
buckling were considered. Design studies performed using a shell length of 165 in and
a radius of 60 in have shown that under pure axial compression, the optimal geodesic
shell presents stiffeners that are inclined at an angle of 45°. In the case of hydrostatic
pressure, angles of 90° were obtained, indicating that for this loading a ring stiffened
shell corresponds to the optimum configuration. In all cases, spirally stiffened shells
were inferior to shells with conventional-type stiffeners. The authors noted, however,
that the superiority of a particular configuration will depend on the shell parameters,
loading conditions and side constraints involved in the application, as well as on the
nature of the stiffener cross section.

In 1980, Karmakar [9] used the same overall shell dimensions and properties that
Pappas and Amba-Rao [8] used and performed a design study considering six types of
stiffener configurations, including 45° internal and external spiral stiffening. The shell
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was subjected to axial compression. Simple computational procedures that neglect the
discrete nature of the stiffeners were used to predict buckling between circumferential
stiffeners, local buckling of skin, local buckling of axial and spiral stiffeners, and vielding
of the cylinder material. The results indicate that outside stiffened cylinders were lighter
than their internally stiffened “counterparts. For internally stiffened configurations, a
combination of rings, smingers and spiral stiffeners reéﬁltcd in the lightest configuration
followed by spiral type stiffening. Among all the stiffener configurations studied (being
internally or externally stiffened), spiral type outside stiffening gave the lightest design.
In all cases, suffener spacing was considered as a design variable. In the case of spiral
stiffening, the optimum stiffener spacing was around 1.4 in with no significant difference
in the optimum stiffener Spaéihg between internal and external stiffening.

As mentioned in the introductory chapter, in the case of composite structures, the
utilization of geodesic stiffeners actually eases the manufacturing process compared to
more conventional stiffener arfangemcnts. Therefore, it was natural for the researchers
to consider this type of stiffening :m the search for efficient structural concepts. Rehfield
and his co-workers [2,10] considered a variant of the geodesic stiffening called “isogrid”
stiffening for the design of composite flat panels and cylindrical shells. Their stiffening
concept used a repetitive equilateral triangular pattern of stiffening ribs. The name “iso-
grid” refers to the fact that the triangular grid behaves in a gross sense as an isotropic
material. Therefore, simple computational procedures were used to predict the static and
buckling responses of the stiffened structure. In their first paper [2], parametric studies
based on such procedures were used to design a 20 in diameter, continuous filament
advanced composite isogrid cylindrical shell. A quasi-isotropic skin of lamination se-
quence [-60/0/60]s was chosen and the stiffeners were made of unidirectional material.
For the final design, obtained from an extensive parametric study, the skin was 0.030 in

thick and the stiffeners were 0.058 in thick and 0.10 in high. The distance between two
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stiffener intersections was 1.5 in. The critical buckling mode consisted of two longitu-
dinal half waves and six circumferential full waves. In a second paper [10], the problem
of determining the damage tolerance characteristics of composite isogrid structures was
addressed. Since the stiffeners provide most of the bending stiffness, damage to these
members was considered. Beams and flat panels were tested. As expected, due to
the redundant nature of the isogrid concept, good damage tolerance characteristics were
exhibited by the structures.

In Ref. [1], parametric design studies comparing the isogrid concept to other configu-
rations that can also be manufactured using a filament winding technique were presented.
Constraints on general instability, skin buckling, and rib crippling were considered. For
general instability, constitutive relatons for the stiffened shell were found by smearing
out the stiffeners and representing the cylinder as a homogeneous shell. For local skin
buckling, the inter-stiffener skin section was treated as an orthotropic triangular plate
with simply-supported edges under in-plane loads. Finally, the buckling load for the
ribs was estimated using an approximate formula for the buckling of an orthotropic plate
with fixed ends and simply-supported and free edges. Results of the design studies con-
ducted on a C-130 fuselage barrel subjected to combined axial compression and shear
have shown that both the isogrid and orthogrid stiffening patterns result in savings over
the existing metal design. For the isogrid stiffening, skin laminates with a lamination
sequence of [0/ 60]s resulted in lighter designs compare to a [0/90/+ 45]s sequence.
The best design was obtained for a skin thickness of 0.072 in and stiffeners of 0.13
in thick and 1.3 in high. The results also indicated that both the isogrid and orthogrid
stiffening concepts were weight competitive. However, the authors noted that the high
damage tolerance characteristics of the isogrid conccpf would make it more attractive
for aircraft fuselage applications.

In Ref. [11], equations predicting the buckling strength of cylindrical geodesic struc-
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tures were presented. This represents the only available work on composite geodesic
cylindrical shells. The analysis assumed that the buckling wave extended over a rather
wide portion of the cylinder. Consequently, the cylinder behaved as if it were an or-
thotropic one and the discrete nature of the stiffeners was neglected. Based on numerical
results, the author concluded that if the pitch of the geodesic members was relatively
small compared to the cylinder radius, a cylindrical geodesic structure behaves as a uni-
form orthotropic-skin cylinder. On the other hand, if the buckling occurs over a localized
portion of the cylinder, not including the buckling of a member between adjacent joints,
finite element analysis must be used to predict the buckling load of the structure.

The geodesic concept was rcécntly considered for impact-damage tolerant helicopter
tail structures [12-13]. In this case, a cylindrical composite open framework in which
the slender component bars follow the geodesics of the shell was considered. Only tor-
sional loading was studied, and both linear and nonlinear finite element analyses were
performed. It was found that using curved beam elements could produce a significant im-
provement in predicting the buckling torque over a previous analysis which used straight
elements. However, large errors were still obtained compared to experimental buckling
torques. Upon further detailed experimental testing of joints, the authors realized that
the discrepancy was principally caused by the joint flexibility resulting from the scissor-
ing of the crossing beams. It was found that this flexibility was an important factor in
the overall behavior of the framework and to represent it, new models were set up. In

these models, the crossing members were offset and the torsional stiffness represented

‘with a 2-node beam element. Results obtained with these models were closer to the

experimental results.
In Ref. [14] the analysis and the optimal design of a geodesically stiffened wing
rib panel was performed. Through the use of Lagrange multipliers, the buckling load

of rectangular orthotropic plates with a number of oblique stiffeners was calculated
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without smearing the stiffeners. Design constraints considered in the analysis were
global buckling of the panel assembly, local crippling of the stiffeners, and material
strength. Design variables included thickness of the skin laminate, stiffener thickness,
a:;d stiffener height. The design study results showed that ‘thc grid-stiffened geomertry
resulted in lighter designs compared to the conventional longitudinal stiffened panel
under the. in-plane loading cases considered.

In a recent study, the effect of stffness discontinuities and structural parameters on
the response of continuous-filament grid-stffened flat panels was presented [15]. The
buckling load degradation due to manufacturing-introduced stiffener discontinuities asso-
ciated with a filament cut-and-add approach at the stiffener intersection was investigated.
For practical discontinuity sizes, the reduction in buckling load was found negligible.
The benefit of utilizing non-solid stiffener cross sections, such as a foam-filled blade or
hat with a 0° dominant cap, was evaluated. Such stiffener cross sections were found
structurally very efficient for wing and fuselage applications.

In summary, the need for efficient and cost-effective structures has prompted the
development and study of new stiffening patterns which present stiffeners oriented at
an arbitrary angle with respect to the axis of the shell. In the case of isotropic cylin-
drical shells, two design studies that have considered axial compression and pressure
have resulted in conflicting conclusions concéming the efficiency of geodesically stff-
ened shells. In the case of compositc' materials, no exhaustive design study has been
conducted either. The only results available have been obtained from parametric studies
on isogrid stffened cylinders. In all cases, very dense grids of stiffeners were used. Al-
though experimental results indicate that geodesically stiffened shells exhibit very good
damage tolerance characteristics and that they can be cost-efficiently manufactured, no
information is yet available concerning the performance of the geodesic stiffening con-

cept compared to more conventional stiffener arrangements in the case of composite
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structures.

2.3 Scope of Design Study

14

To evaluate the efficiency of the geodesic stffening concépt in the case of composite
aircraft fuselages, a design study is proposed. Its 6verall objective is to seek practical,
minimum-weight designs for geodesically stiffened composite cylindrical shells, and
provide a database for a direct comparison of the optimal weights obtained with more
wraditional stiffening patterns. Although the cost for the construction of the different shell
configurations may be different, no attempt will be made to include cost considerations
into the comparison study./ The functional requirements of aircraft fuselages force the
inclusion of large opéni:irirg:s"sﬂuch as access ports and windows. For this reason, larger
skin portions between stiffeners, compared to those considered in the examples published
in the literature, will be considered. Consequently, it is believed that the discrete nature
of the stdffeners will have a stronger influence on the local and overall behaviors of
the shell. This is among the reasons why its analysis will be obtained via the finite
element method. All the design runs are performed with the optimization system TBOP
(TestBed and OPtmizatdon) which is a finite element based optimization system that
has been developed in the course of this research initiative and that will be described in
Chapter 3. Optimum designs are sought for unstiffened shells as well as the geodesically

and conventionally stiffened shells subject to buckling and material failure constraints.

In the case of the stiffened shells, different numbers of cells in the axial and circumferen-
tial directions are considered. Prospective geodesic and conventional configurations are
shown in Figs. 2.2 and 2.3, respectively. In both cases, shaded portions indicate what
is considered to be a single cell. Although this definition is somewhat arbitrary, it was
chosen such that the number of stringers in the case of a conventionally stiffened shell,

and stiffeners in the case of a geodesically stiffened shell are equal between geometries
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with the same number of cells. The developed surface of each cell is also equal. In
the case of the conventionally stiffened shell, the definition of a cell is as shown in Fig.
2.4, It includes a portion of the skin with two stringers (one in the middle and one
half on each side) and is terminated by rings. Skin laminates with +45°, 90°, and 0°
plies will be considered, where the lamination angle in the skin is measured with respect
to the axial direction. For the stiffeners, an orthotropic laminadon sequence of [0]r is
considered where the lamination angle in the stiffeners is measured with respect to their
axis. Two levels of external loads, ;, are applied in uniaxial compression: 1000 and
2700 pounds-force per inch (/4/in). In torsion, two levels are also considered: N., =
418.5 1/in and 1000 Ib/in.

In the case of the unstiffened shell, three design variables are used. They are the
thickness of the 45°, 90°, and 0° plies, respectively. In the case of geodesically stffened
shells, five design variables are used. The first three are identical to those used in
the case of the unstiffened shell, and the fourth and fifth design variables designate the
thickness and height of the geodesic stiffeners. In the case of the conventionally stiffened
shell, seven design variables are considered. The first three design variables are identical
to those used in the case of the unstffened shell. The fourth and fifth design variables
designate respectively the thickness and height of the stringers, and the sixth and seventh,
the thickness and height of the inner rings, respectively.

Properties of a typlcal graphite- epoxy material system (Hercules AS4/3502) are used
in all analyses. Material properties for the sﬁffencrs were assumed to be the same as
those for the skin laminae. Since the maximum strain theory is used to predict material
failure, the material strengths are expressed in terms of maximum allowable strain values.
The elastic, strength, and physical properties used in the design study are shown in Table

2.1
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=4 : Definition of a cell

Fig. 2.2 - Design Study, Geodesically Stiffened Configurations.
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Fig.

2.2 - Design Study, Geodesically Stiffened Configurations (Continued).
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4. Definition of a cell

Fig. 2.3 — Design Study, Conventionally Stiffened Configurations.
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Fig. 2.4 — Definition of a Cell for the Conventionally Stiffened Shell.
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Table 2.1 - Graphite-Epoxy Material Properties.

Elastic Properties :

E. E, G2 Gas vz

Msi Msi Msi Msi

185 184 0.87 0.54 0.3

E, E» G2 Gaa V12

GPa GPa GPa GPa

12% 11.3 6.0 3.7 0.3

Strength Properdes :

€] sllowale €Y allowable €3 allowable €3 allowgble Y12,allowable
0.009 0.008 0.0055 0.029 0.025

Physical Properties :
p=0057 Ibm/in® (1600 kg/m?)
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Chapter 3
' The Optimization System

Comparing the efficiency of the geodesic stiffening concept to unstffened and con-
ventionally stiffened shells requires the study of different and complex configurations.
To guarantee uniformity in the results, a versatile analysis and design tool that can deal
with each of these different configurations has to be used. This requirement prompted
the development of the new optimization system presented in this chapter.

Several alternatives can be considered for the development of an optimization system.
The use of special purpose programs that combine both the computation of the structural
response as well as the implementation of the optimization algorithm is one of the
alternatives. However, such programs have limited capabilities and are consequently not
suitable for the type of research considered herein. More often, a general purpose analysis
package, such as a finite element code, is used for the computation of the structural
response and an optimization package solves the design problem. This is the approach
followed in the present study. The optimization tool is based on the finite element code
CSM Testbed [16,17] and the optimization program ADS [18]. Before proceeding to
the description of this new optimization system, some terminology that will be used in
the present study is defined in Section 3.1. In Section 3.2, other optimization systems
that have been recently developed are briefly described. Then, in Section 3.3.1, some
generalities and the philosophy that has guided the development of the optimization
system are presented. This is followed, in Sections 3.3.2 and 3.3.3, by a description of
the new computational modules and procedures that have been developed to orchestrate
the sequence of calculations required to achieve an optimum. The description of the

optimization system ends with a discussion of the strategy that implements the imposition
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of buckling constraints. Finally, in Section 3.4, the results obtained for three example

problems are discussed.
3.1 Terminology

The definidon of the principal terms used in this chapter is given in this section.
The notion of optmal design requires the definition of a merit funcdon, called the
objective function, that can be improved. An improvement in the objective function can
be achieved by varying cerain characteristics of the model, called design variables. Also,
the design must usually satisfy a se: of equalities and/or inequalities which impose lower
or upper bounds on quantities such as displacements, strains, eigenvalues, etc .... These
relations are called constraints and they may be used, for example, to specify bounds on
the value of the buckling load or the displacement of a point. The optimization problem
is:

minimize f(x) (3.1)
such that g;(x) <0, J=1,...,n4
he(x) = 0, E=1,...,np,
where f is the objective function, g; are the inequality constraints, , the equality con-
straints, and x the vector of design variables.

In the present study, an optimization system is defined as a computer program that
can realize the minimum-weight design of a structure based on a structural response
obtained from a finite element code. Such a system can be divided into three parts. A
general-purpose finite element code represents one of these parts. It is used to compute
the structural response corresponding to a specific design. A second part consists of
the sensitivity analysis module. It is responsible for the computation of the structural
response derivatives with respect to the design variables. This information is required

by the optimizer which constitutes the third part.

22



It is clear that although this definition of an optimization system fits the approach
used in the present work, the second of the three basic components, namely the sen-
sitivity module, does not necessarily need to be present. If it is absent, the derivative
i;xformau'on can be computed using a finite difference formulation. This approach re-
quires the successive analysis of several designs, each of which is obtained by perturbing

the value of a single design variable.

The finite element code used in the present study is called the CSM Testbed program
[16,17]. It consists of a set of semi-independent computational modules, known as
processors, which communicate with each other only by exchanging data objects residing
in a data library. To utilize the processors in a particular analysis task, procedures
must be written in a high-level command language called CLAMP [16] (Command
Language for Applied Mechanics Processors). The commands of a CLAMP procedure
can be interpreted and converted into object records by a *“filter” utility called CLIP [16]
(Command Language Interpreter Program). The framework is depicted in Fig. 3.1.

3.2 Finite Element Based Optimization Systems

The versatility achieved by combining a finite element program and an optimization
code has attracted the interest of many researchers and three examples where this strategy
has been chosen can be found in recent literature. In Ref. [19], Walsh combined the
EAL [20] commercial package with the general-purpose optimization program CONMIN
[21]. CONMIN employs a usable-feasible directions search algorithm to minimize an
objective function that is s.bjected to a set of inequality constraints. Piecewise-linear
approximations of the objective function and the constraints along with move limits were
used in order to reduce the number of exact analyses required to achieve the optimum.
Except for the move limits, the only constraints supported by this optimization system

were stress constraints. The derivative computations were performed using the semi-
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analytical approach described in Ref. [22]. The optimization system was applied to the
minimum-mass design of a large transport-type wing designed to satisfy stress constraints
while subjected to two static loading conditions. Results obtained using the system were
c;)mpared with results produced by a fully stressed design ﬁrocedure.

Probably one of the most popular and widely used finite element analysis code is the
MSC/NASTRAN computer program. In 1983, a design sensitvity analysis module was
developed for this program and this new feature resulted in the development of several
optimization systems based on MSC/NASTRAN. The design sensitivity module was
recently enhanced to include design variables and responses for composite materials.
This new facility was used in Ref. [23] to develop a NASTRAN-based optimization
system that can be used to design composite structures. The optimizer is called CONLIN
[24] and its interface with MSC/NASTRAN was also described in the paper. CONLIN
is a general-purpose optimizer that uses a convex linearization scheme to solve the
optimization problem.

For the design sensitivity analysis of composites in MSC/NASTRAN, the design
constraints could be lamina stresses or failure indices, displacement, frequency, buckling
loads, or forces. Sensitivity of the dcsigr_x to changes in lamina thicknesses, orientation
angles, or material properties could be obtained. However, a single type of variables,
lamina thicknesses, could be defined as design variables. Semi-analytical expressions
were used for the calculaton of the constraint derivatives with respect to the design
variables.

The optimization system described in Ref. [23] was tested on two example prob-
lems. The first problem dealt with the minimum-mass design of a rectangular laminated
composite plate with a circular hole subjected to a material failure constraint. The second
demonstration problem considered the minimum-mass design of a delta wing subjected

to a displacement constraint.
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Recently, the finite element program ABAQUS [25] and the optimization code ADS
[18] were combined to form the optimization system described in Ref. [26]. In this
case, no sensitivity module was developed. However, the finite difference calculations
c'orresponding to the approximation of the constraint deﬁvat:ives with respect to the
design variables were performed on separate processors. The optimization system was
used to obtain a minimum-mass de’sign for an aircraft canopy loaded by an internal

pressure. The opumization was performed using 50 thickness design variables and only

stress constraints based on the von Mises criterion were imposed at each element.

3.3 A New Optimization System

3.3.1 Generalities

The new optimization system, called TBOP, is based on the CSM Testbed [16,17]
and the general purpose optimizaton code ADS [18]. A user’s manual is available for
the program (see Ref. [27]), and consequently, none of the details related to the use
of the optimizaton system will be presented here. The CSM Testbed is a framework
for computational structural mechanics research which integrates research in structural
mechanics, numerical analysis, and computer science. Several considerations have mo-
tivated the choice of the CSM Testbed. Among these considerations, the unrestricted
access to all parts of the source code, the modularity, as well as the availability of a
variety of state-of-the-art solution algorithms are major motivations. Another interesting
aspect of the CSM Testbed is that it offers algorithms that exploit the hardware capabil-
ities available with the new generation of computers. The availability of state-of-the-art
solution algorithms and their efficient implementation are very important features in the
context of optimization where the analysis must be repeatedly performed. The version of
the CSM Testbed used in the present study performs all the calculations using 16 digits.

The choice of the ADS optimization module has been motivated by the wide set
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of strategies that it offers to solve the optimization problem. This feature allows the
tailoring of the optimization strategy to the problem at hand. Moreover, the architecture
O,f ADS is such that it can be turned into a CSM Testbed processor by simply defining
separate subroutines without requiring modifications to its oﬁgind code. This means that
it can easily be replaced once a new version of the program becomes available. This
characteristic also preserves the modularity of the optimization system that can easily be
separated into its three basic modules; namely, the finite element code, the sensitivity
analysis module, and the optimizer.

The organization of the optimization system follows the philosophy used in the
development of the CSM Testbed program (see Fig. 3.1). The CSM Testbed differs
from conventional finite element codes in that there is no single, monolithic program
(processor) controlling all aspects of the analysis. Instead, there is a growing set of
independently executable FORTRAN processors, each of which is responsible for only
a small portion of the work, and on top of which are a growing selection of high-level
CLAMP procedures. To enforce modularity, processors do not communicate explic-
itly with each other, but instead communicate only by exchanging data objects in the
global database. The global database is made up of sets of data libraries which contain
collections of named datasets.

To keep up with this philosophy, a set of CLAMP procedures have been developed to
control the optimization run. Each of these procedures implements a small portion of the
work that must be performed to compute an optimum. Also, ADS has been embedded
into a processor. This means that it can now be called just as any other CSM Testbed
processor. As a result, both the optimizaton and the analysis programs are sitting at
the same level, and CLAMP procedures are in charge of calling each processor in the
appropriate order. The flow of calculations required for the computation of an optimum

is shown in Fig. 3.2. In theory, however, ADS is the “master” that sets the design
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variables to their new values and the analysis modules of the CSM Testbed constitute
the “slave” responsible for the computaton of the information required by the opumizer
10 proceed in the design space. This information may consist of the function values or
of' their derivatives with respect to the design variables as @uested by the optmizer
through a variable called inZs.

In its current implementarion, the optimization system supports three different types
of design variables. Two are related to the laminate construction. They are the thickness
of a ply and its orientation. The third type of design variable can designate the size of
finite elements and, consequently, allows a limited amount of shape optimization to be
performed. In this study, it is used to modify the height of stiffening members. Linking
of the thickness or orientation design variables is possible. —-

The optimizaton system defines the weight of the structural component as the objec-
tive functon that must be minimized subject to a set of constraints. Although this sall
allows for the solutioh of a wide class of problems, this type of objective function will
be difficult to use in conjuncdoﬁ wnh ply angle design vaﬁables because the gradient
of the objective function with respect to such design variables is zero. Consequently,
the only design variables considered in the present study are ply thicknesses and size of
finite elements.

Three types of constraints, buckling g,, displacément g+ and material failure con-

‘straints g;, can be imposed on the design. Buckling constraints are predicted using
~ a linearized buckling analysis which results in the solution of an cigenvalue problem.

Critical load vectors P;, which correspond to buckling in different modes, are obtained
by:

P; = ); Py, (3.2)

where ); is the jth eigenvalue and P,.; is a reference load vector. The kth buckling
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constraint g; is:

gbk-—_fk—/\jso, k:l,...,nb, (33)

where 7, is the limiting value of )}, and n, is the number of buckling constraints. Since
), and v, are close to 1.0, the buckhng constramts do not, need to be normalized. The
procedurc used in the present srudv to impose buckling constraints will be discussed in
Secton 3.3.4. The displacement constraints g, require that the jth component of the
nodal displacenient vector;be lessr than a giQrern Vmaximum allowable value %,. The kth

displacement constraint is:

7. —1.0<0.0. k=1,... nq. (3.4)

fugs
dk = “—
9 N

Finally, the material failufe constraints, g, are evaluated using the maximum strain
failure theory. The strains in each ply are first calculated from the mid-plane strains
and curvatures computed at a specific integration point. They are then transformed to
the principal material directions and compared to tﬁéir respective allowable values. The

ratio closest to 1.0 is retained and used to evaluate the constraint,
_ lejl _
g == ~10<00, k=1,...,n,, (3.5)

where ¢; is a component of the engineering strains and ¢, is its maximum allowable
value.

Since a gradient-based optimization algorithm is used, the derivatives of the con-
straints with respect to the ith design variable z; are required. These are found by

differentiating Eqgs. (3.3)-(3.5) and their calculation will be discussed in Section 3.3.3.

3.3.2 The Processors

The CSM Testbed consists of a library of independently executable FORTRAN

computational modules or processors. To build the optimization system, three new
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processors have been added to this library. The first of these processors, BDLM (BuilD
LaMinate), builds the different lamination sequences to be used in the various sections of

2 model. This processor reads user-defined sublaminate stacking sequences and stacking
orders and creates new datasets that contain the definition <;f complete stacking sequences
for groups of elements. This feature allows a design variable to designate the thickness
or orientation of a ply contained in several lamination sequences. This is important from
a manufacturing point of view since tailoring of a structure is normally achieved by
adding, at selected locations, plies with appropriate thicknesses and orientatons on top
of an underlying base laminate.

The implementation of this feature has been realized by first breaking up the defini-
tion of the lamination sequences into two successive steps. In the first step, sublaminate
stacking sequences are defined in exactly the same way lamination sequences are de-
fined in the CSM Testbed. Then, the ordefin which each sublaminate must be stacked
to produce the complete lamination sequence is given. For example, the definition of
the four stacking sequences L1 through L4 of the plate shown in Fig. 3.3 is obtained
by defining three sublaminate sequences, S1-S3 and four stacking orders, one for each
section. The base sublaminate S1 covers all four sections of the plate while vertical and
horizontal sectons with different properties are obtained by adding S2 and S3, respec-
tively. These vertical and horizontal sections may rcpresent the flange area of stiffeners

______ and fail safe straps, respectively, that are added to the skin laminate to improve the
structural performance.

Secondly, the ply orientation and ply thickness design variables refer to plies con-
tained in sublaminate stacking sequences. This implies that when the value of one of
these design variables is changed, only one sublaminate sequence must be updated but

all the lamination sequences that contain this sublaminate must be rebuilt by BDLM.

Consider an example where the optimal thickness of one of the 90° plies adjacent to
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Fig. 3.3 - Lamination Sequences for a Flat Plate.
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the mid-plane of the plate shown in Fig. 3.3 is sought. In this case, the sublaminate
sequence S1 must be updated but the four lamination sequences must be rebuilt since
S1 enters the definition of each of them.

' The second processor added to the library of CSM Testbed processors is called OPTI.
This processor is primarily used to set up the optimization problem and extract, from the
CSM Téstbed database, the information necessary for the evaluation of the constraints
and their gradients. The functionalities of the processor can consequently be divided into
three groups. The first group contains the different facilities required for the definition
of the design variables, the constraints and the objective function. These facilities are
used once, at the beginning of each design run, to set up the optimization problem. The
second group contains programs that access the database and evaluate the constraints
and their gradients. Finally, a third group of functionalities realize miscellaneous oper-
ations required at different stages of the optimization run. For example, one subroutine
calculates the load applied to the model and the corresponding scale factor that must be
applied to the displacements when the loading is introduced using displacement boundary
conditions.

The third processor is called TB2O. This processor contains the optimization program
ADS, and it also serves as an interface between the CSM Testbed and ADS. Most of
the interfacing work consists of reading information from the CSM Testbed datasets and
passing this information to ADS using different FORTRAN variables and arrays. The
information that needs to be sent to ADS includes the values of the design variables, the
constraints, the objective function, as well as miscellaneous optimization-related data.
Upon return from the optimizer, the design has been modified, and TB20 updates the
different datasets that need to be changed. Those datasets consist of the sublaminate
stacking sequences in the case of ply thickness or ply orientation design variables. In

the case of height design variables, the dataset that contains the node coordinates must
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be updated.

3.3.3 The Procedures

As previously mentioned in Section 3.3.1, a set of CLAMP procedures implements
the sequence of operations required for the computation of an optimal design. To better
understand the role of each procedure, flowcharts that describe the performed operations
are included in Appendix A. The different procedures are briefly described in this section.

The procedure controlling the optimizaton run is called des_ana_iter. It imple-
ments the loop shown in Fig. 3.2. At each cycle, either an exact analysis or the
computation of the derivatives of the functions that define the optimization problem are
performed. The analysis and derivative caqulations are conuolled by the procedure
branch_on_info, andrconsequenly, des_ana_iter first calls this procedure, and then
tﬁe WoptimiZer.

The role of branch_on_info is to organize the evaluation of the structural response
corresponding to the current design or a perturbation of the current design. In either case,
branch_on_info must call either the procedure analysis or derivative and the pro-

cessor OPTI. If the optimizer has requested the calculation of the values of the functions,

the two libraries containing the database are first examined to eliminate obsolete infor-

mation Vggncra‘tcd at ﬂtherprevigus d:sigg P9i{1§- Then, a procedure named analysis is
called. The role of this procedure is described below. Finally, the processor OPTI is
executed to evarhiatertih;: constraints and the objective function. On the other hand, if the
values of the derivatives have been requested, a procedure named derivative, which
is also described below, will first be called. This call is immediately followed by an
execution of the processor OPTL. In this case, OPTI is responsible for the constraint and
objective function derivatives with respect to 7thc design variables.

The role of the procedure analysis is to compute the information required by
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OPTI to evaluate the constraints. Depending on the nature of the constraints imposed
on the design, this information may consist of the displacement vector, the eigenvalues
corresponding to the buckling problem, and/or the strains. In order to apply combined
Ioz;ding conditions while controlling the individual magnitude's, analysis implements a
scaling feature that permits the loading to be introduced using applied displacements.

With the finite element method, the loading can be applied by specifying either nodal
displacements or nodal forces at the boundaries. If nodal forces are applied, no scaling
will be necessary since the magnitude of the applied load corresponds to the magnirude
of the design load. However, the resulting displacements at the loaded edges are not nec-
essarily uniform and, therefore, deviate from the boundary conditions that are observed
during the actual loading of the structure. One way of solving this problem is to place
stff elements adjacent to the loaded boundary. Because of the increased computational
cost associated with a larger model and the ill-conditioned matrices that result from a
model with large differences in the stiffness of its elements, load introduction through
applied displacements is usually preferred. In this case, the boundary conditons can
be applied directly to the model of the smucture and the corresponding nodal loads are
computed from the finite element solution.

Although using nonzero boundary conditions eases the analysis of the structure, the
static displacements corresponding to a specific design must be scaled by analysis
since the load resulting from applying such boundary condidons may not correspond
to the design load. To handle cornbincd ﬁlioading conditions, analysis can compute
up to three scaling factors, each factor corresponding to a different component of the
combined loading condition. For example, consider the case of a structure that must be
designed to resist a combined compression and shear loading. In such a situation, the
user must specify two series of nonzero displacement boundary conditons, one of which

corresponds to a case of pure compressive loading and the other to a case of pure shear.
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During the analysis of the structure, the procedure analysis will consider each case
independently by computing a static displacement solution and a scaling factor for each
of them. It will then apply each scaling factor to its corresponding static displacement
sélun'on and superpose them to obtain the static displacexﬁcm solution corresponding

to the combined loading condition. This resulting set of displacements will be used to
| coniputc the strains and the eigenvalues of the buckling problem.

The procedure derivative performs the computations of the perturbed structural
response quantities such as displacements, strains, etc ..., which are required by the
processor OPTI to evaluate the constraint derivatives with respect to the design variables.
With ADS, the user has the option of either letting ADS determine the derivatives by finite
differences or supplying the derivative information to ADS. Because of the organization
of the optimization system, the latter method must now be chosen. Both an overall finite
difference scheme (OFD) and a semi-analytical (SA) method have been implemented in
the procedure derivative for the approximation of the derivatives of the constraints
with respect to the design variables. Note that in the present study, the objective function
corresponds to the weight of the structure. Therefore, the computation of its derivatives
is based solely on geometric characteristics.

The semi-analytical method for the calculation of the constraint derivatives combines
an analytical expression for the displacement derivatives and a finite difference approx-
imation for the derivatives of the system matrices. ' This strategy is outlined below for
the cases of applied nodal forces and nonzero displacement boundary conditions.

In the case of applied nodal forces, the derivative of the displacement vector with
respect to a design variable du,/dz; is obtained by solving the set of equations resulting
from taking the first derivative of the equilibrium equations with respect to z;:

%’ = % Z_if (3.6)
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where K is the stffness matrix, uy the displacement vector, and f the load vector. The
terms dK/dz; and df/dz; are approximated using finite difference formulas.

If nonzero displacement boundary conditions are applied [28], the equilibrium equa-

S B} (2)

where block K. ; represents the non-singular matrix that is solved by a linear equation

' 4

tions can be viewed as:

solver while blocks K; . and K., contain coefficients that are eliminated due to con-
straint conditions. The vectors of unknown displacements and boundary conditions are
represented by u, and u,, respecdvely. Note thﬁt u. may have zero and nonzero compo-
nents depending respectively on whether the corresponding nodal displacement is fully
restrained, or nonzero displacement boundary conditions are specified. Similarly, the
right-hand-side vector is divided into two parts: a null vector 0, and the static reaction
vector, R.

The load applied to the model, F,(x), corresponding to the boundary conditons u,
is:

Fi(x) =

> &) (38)
j€A

where A is a user-defined vector that gives the position in the static reaction vector of
the components that must be added to obtain the total applied load.

If the design load is Fy, then the displacement vector corresponding to the design

ug = {‘: } = s(x) { ‘;" } (3.9)

where s(x) is a scale factor given by:

load, u4, is given by:

s(x) = Fa/Fa(x) (3-10)

In this case, the derivative of u,. with respect to a design variable z; is given by:

duge _ ds (3.11)

U,
dz; dz;
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and, similarly, dug, /dz; is obtained from:

du gy du, ds
dz, -—Sd—zi'}'d—riuu- (3.12)

» To obtain ds/dz;, successively differentdate Eqgs. (3.10) and (3.8):

dR;
Py

JEA |

ds _ =k

dl‘,’ Fa2

) (3.13)
where, dR/dz; is obtained by differentiating the equilibrium equations corresponding to
u., Eq. (3.7). That is,

dKT
dR - L2y 4 KT du, + dK ,

7 dl‘{ dl‘" l'g—dz_j d.‘l:,' Q. (3.14)
Finally, the only missing term in the expression for dug,/dz,, is du,/dz; and it can
be obtained by taking the first derivative of the equilibrium equations corresponding to

u,, Eq. (3.7). That is,

K du, _ tﬂ(x,zu dK,
L1 dz; - d.’L‘,' ¢ dt.' U

(3.15)
~ Note that one of the reasons for the SA method to result in coméu;ational savings,
comparedft:o' the OFD approach, is that it does not require the factoﬁzation of system
matrices for computation of the derivatives. The solutions that need to be computed use
system matrices that have already been factored during the previous exact analysis. Con-
sequently, only forward elimination and backward substitution operations are required
and are one order of magnitude less expénsive than the matrix factorization.

Once these computations have been performed and the derivative of the displace-
ment vector with respect to a dc51gn variable has been obtained, the calculation of the

derivatives of the constraints (Eqs. (3.3)-(3.5)) can be performed. In the case of a

buckling constraint, we obtain [29]:

dK dKg
T
.dﬂ _ —ko _ j(dz,- + I dz )uJ (3 16)
d&'( - dt,' - uJTKGu,- )



where K is the geometric stiffness matrix, and u; is the jth eigenvector. As for other
system matrices, the derivative of K¢ is approximated using a forward finite-difference
formula. The perturbed geometric stiffness matrix entering the finite-difference formula
,is obtained using the stresses corresponding to a ﬁ_rst-ordc} Taylor series approximation
u, of the perturbed displacement vector:

. du
ui=ug+ ar—j_\.z‘-, (3.17)

where Az; represents a perturbation in the value of z,.

In the case of a displacement constraint, the derivative is directly obtained from
the solution of Eq. (3.6) or (3.12). Finally, in the case of material failure constraints,
Eq. (3.17) is first used to approximate the perturbed displacement vector. Then, the
strains corresponding to uy are computed. Finally, a finite difference formula is used to

approximate the derivative of the constraint with respect to z;.
3.3.4 Implementation of Buckling Constraints

Structures made up of thin-walled components must be designed for buckling re-
sistance. To put the problem of imposing buckling constraints in perspective, it is
worthwhile to present a simple example and briefly review the different alternatives that
can be considered for the imposition of such constraints. 7

The example used to illustrate the imposition of buckling constraints is shown in Fig.
3.4. Itis a simply-supported open-web truss structure subjected to a uniform compressive
loading applied using nonzero dispulacr:;,mrent béundary conditions at its top edge (y = 28
in). Two design variables are considered; one represents the thickness t of the members,
and the other their height h (z—direction in Fig. 3.4), with initial values of 0.55 in and
0.60 in, respectively. The objective function represents the total weight of the truss.
The lowest eight eigenvalues obtained for this design are presented in Table 3.1. As
indicated in this table, based on the general shape of the eigenmodes, the eigenvalues
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can be classified into two different sets. The lowest three eigenvalues are associated
with in-plane buckling modes that are slightly different from one another. Similarly,
the cwenvalues 4 through 8 are associated with shghtly dlfferent out- of-pla.ne buckling
modes The first, second., fourth and fifth bucklmg modes are shown in Fig. 3.5. Because
of the ceneral shape of the bucldmv modes, it can mrumvely be deduced that changmg t
has a swonger influence on the lowest three eigenvalues than changing h, and vice versa.
For example, the variation of the critical loads associated with the first in-plane and the
first out-of-plane modes with respect to the height of the members is shown in Fig. 3.6.

Based on Lhe dependenc1es of the ewenvalues on the design variables, and assuming

W Lhat the opumlzauon process 1s started from the initial design t = 0.55 in and h = 0.6
in, 1t can intuitively be deduced that, to reach the optimum, the optimizer will tend to -
increase t and decrease h in such a way that the lowesj eigenvalue remains at 1.0 and that
the weight will be reduced. Sucll el move, however, will result in a smaller difference
between the values of the fourth and th1rd elgenvalues. As the design progresses, the
magnitude of the fourth eigenvalue will continuously decrease, until it switches place
with the lower ones. Eventually the two eigenvalues correspondmg to the first out-of-
plane and in- plane modes wﬂl appfoach the same va.luc

To guarantee that all the bucklmg modes are taken mto account duﬁng the design

process, closely-spaced c1genva.1ues that can potennally switch places may requue the

N imposition of as many bucklmg constramts as there are cornputed clgenvalues However

" this pracuee is mconvement since to avoid coalescent elgenvalues which are undesirable

because they cannot be combined in a linear 'fasfhf'iofﬁ"['29] increaSing values must be

chosen for 7,k = 1,...n; in Eq (3.3). As a result of unposmg such a number of

' 'bucklmg constramts “the opumxzauon problem may becomc over-consu'amed and non-

opumal desxgns can be obtamed. On the other hand, 1mposmg a smgle bucklmg constraint
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Fig. 3.4 - Six-cell Cross-Stiffened Open-web Truss.
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Table 3.1 - Lowest Eight 'Eigehv'a—ljuesb for the Six-Cell Open-Web Truss.

Sequence | Eigenvalue Set
1 1.0000 In-plane
2 1.0326 In-plane
3 1.1286 In-plane
4 1.1890 Out-of-plane
5 1.1891 Out-of-plane
6 1.1892 Out-of-plane
7 1.1894 Out-of-plane
8 1.1896 Out-of-plane
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b - Second Buckling Mode.

d - Fifth Buckling Mode (Second QOut-of-plane).

Fig. 3.5 - Four Buckling Modes for the Open-web Truss Structure.
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associated with two different modes become closely spaced and start switching places.
In the case of the open-web truss structure discussed above, for example, convergence
problems result in the generation of designs for which the lowest in-plane and out-of-
pla}lc buckling modes become alternatively critical. .

An alternate strategy is proposed in the present study. It is based on the observa-
tion that the eigenvalues can be grouped based on the values of their derivatives with
respect to the design variables. Each group contains eigenvalues with derivatves of
similar magnitudes. A buckling constraint is then imposed only on the lowest eigen-
value found in each group. For example, in the case of the open-web truss, the first
three eigenvalues vary as a group, as the design is changed, without switching places
within the group. Consegently, a single buckling constraint can be used to control these
eigenvalues. The implementation of this procedure can be visualized by forming a (px n)
marrix of eigenvalue derivatives, where n is the number of design variables and p is the
number of eigenvalues contained in a specified range. The range of eigenvalues that
must be examined depends on the buckling response of the structure and has been set
to 1.21;. In order to select the eigenvalues that would be included in the constraint set,
the derivatve of each eigenvalue with respect to a design variable is compared with the
derivative of the lowest eigenvalue with respect to the same design variable. If the differ-
ence is larger than a specified threshold, an additional constraint is set up for the higher
eigenvalue with a new value ©; (sef_e Eq. (3.3)). In the present study, a practical (but
arbitrary) threshold of 20% has been used. For example, the derivatives of the lowest
eight eigenvalues of the open-web truss problem with respect to the design variables are
shown in Table 3.2. Since the derivatives of the second eigenvalue (second row) are not
significantly different from the ones corresponding to the first eigenvalue, A, would not
be included in the constraint set. However, the derivatives of the fourth eigenvalue, the

first out-of-plane buckling mode, are significantly different from the derivatives found
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in the first row. Thus, a buckling constraint would be set up to constrain the fourth
eigenvalue. Once the eigenvalues that must be constrained have been selected, the use
of slightly increasing values for ¥, 73, ... in equation (3.3) precludes the apparition of
coalescent eigenvalues. -

The number of groups of eigenvalues considered at a specific design point depends on
several characteristics of the problem at hénd. First, the thresholds for the identification
of groups of eigenmodes (currently set to 20%) will affect the number of buckling
constraints that will be set up. Secondly, the choice of the design variables will also
influence the buckling response. For example, suppose that the thickness and height
of each pair of members forming the cells of the open-web truss structure discussed
above were allowed to vary independently. Then, as the optimizer starts changing the
dimensions of each member independently, the number of groups of eigenvalues that
need to be considered will progressively increase.

The procedure has been implemented in the optimization system and tested on several
open-web truss and cylindrical composite shell configurations. In all the cases considered,
only one buckling constraint, corresponding to the lowest eigenvalue, was imposed on
the initial design. Additional buckling constraints were automatically added as the lowest

eigenvalues of successive groups were approaching each other.
3.4 Examples

In this section, three examples are presented to demonstrate the capabilities of the
new optimizaééﬁ System. They also validate the implementation of the processors and
procedures that have been developed to build the optimization system. The examples
considered are geodesically stiffened panels. This stiffening concept has been defined in
Chapter 1 and will be studied in more detail starting in Chapter 4. This type of stiffening

has recently received more attention [2,12,13,30], principally due to its potential in
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Table 3.2 - Derivatives of the lowest Ei
with Respect to the Design Variables.

ght Eigenvalues

-2

dA

Sequence i & e
1 ~4.365 —-1.357
2 —4.502 —1.401
3 ~4.906 -1.531
4 -1.760 —4.809
5 -1.760 —-4.809
6 —-1.761 —4.810
7 -1.761 -4.810
8 -1.761 —4.811
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terms of geometric tailoring, weight savings, increased damage tolerance and ease of
manufacturing.

In the first two examples, optimum designs with respcct to weight are obtained
whxle satisfying constraints due to buckling as well as lower and upper bounds on
layer thicknesses and stiffener cross section dimensions. In the third example, material
failure co'nstraims are also considered. The Sequential Convex Programming (SCP)
algorithm combined with the Modified Method of Feasible Directions and the Bounded
Polynomial Interpolation has been chosen to solve the optimization problem. In the
SCP, conservative approximations are used during the optimization of the convex sub-
problem. These approximations may cause the eigenvalues associated with the different
buckling modes of the structure 10 switch following a move in the design space. For
all the examples presented in the present study, move limits have been used. The move
limits were set between 10% and 20% for the initial design and multiplied by 0.8 every
time the most critical constraint obtained at a specific design point was more positive
than at the prevxous de51gn point and larger than 0.001.

The finite element results have been obtained with the CSM Testbed using the
continuum-based nine-node quadrilateral shell element implemented in processor ES1
(element EX97). The computations were performed on a Convex C220 computer lo-

cated at NASA Langley Research Center.
3.4.1 Example 1

The first example focuses on the optimal design of composite wing rib open-web
trusses. Rib dimensions of 28 inches high by 80 inches wide are used. The configuration
shown in Fig. 3.4 is a 6-cell open-web truss and the boundary conditions used for the
analysis are indicated in the figure. Uniform unit displacements are applied at the top

edge of the truss (y = 28 in) to simulate a uniformly distributed compressive load. Each
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member is discretized using 6 9-node shell elements, and only one element is placed
along the height of the members since the structural response presents no strong gradients
in this directon.

' A minimum-weight design corresponding to a compress.ive load », of 1,000 pounds
per inch ({b/in) is sought subject to buckling resistance constraints. The design variables
represent the thickness t and height h (z-direction in Fig. 3.4) of the stiffeners. Only
one laminate is considered, and all its plies are oriented at 0° with respect to the axis
of each member. The number of cells in the x—direction (see Fig. 3.4) is varied in
an incremental fashion to determine the optimal configuration. The minimum weights
obtained are plotted in Fig. 3.7. This figure indicates that a minimum weight design
corresponds to six cells along the length of the panel.

This example clearly demonstrated the utility of the procedure described in Section
3.3.4 that automatically groups the eigenvalues and sets up an appropriate number of
buckling constraints. For all the configurations considered, two buckling constraints, cor-
responding to an in-plane and an out-of-plane buckling mode, are active at the optimum.
The buckling modes corresponding to the lowest in-plane and out-of-plane buckling
modes are shown in Figs. 3.5a and 3.5c. Their corresponding critical loads are 79745
and 82041 1b. Note that both buckling constraints are critical since values of 7, and 7,
of 1.0 and 1.025, respectively have been used in Eq. (3.3). Verification of the Kuhn-
Tucker optimality conditions [29] has shown that the final designs obtained correspond

to optimal designs.

3.4.2 Example 2

This example presents the optimum design of a composite wing rib panel under a
combined compression shear load. The rib dimensions correspond to those used in the

previous example and are shown in Fig. 3.8 along with the boundary conditions. The
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Fig. 3.7 - Structural Efficiency of Open-web Trusses Subjected to
Uniform Compressive Loading.
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stiffeners are symmetrically placed with respect to the skin and an 8-cell configuration
is chosen. The skin lamination sequence is symmetric and present plies oriented at -45°,
45°, 90°, and 0°, the -45° plies being the outer plies and the 0° plies being adjacent to
'the middle plane of the skin (see Fig. 3.8 for the definition of the lamination angle in the
skin). The final thickness of the plies correspond to the value of the first design variable.
All the plies in the stiffeners are oriented along the length of the members. The panel is
subjected to equal magnitudes of shear ~,, and uniaxial compression Ny of 1,000 15/in.

The finite element model of the stiffened panel includes a total of 256 9-node el-
ements and 1073 six-degree-of-freedom nodes. The skin is modelled with 128 (32 by
4) elements and each stiffener is discretdzed with 4 elements. Two sets of nonzero dis-
placement boundary conditions are used to simulate, respectively, the compressive and
the shearing component of the loading. The complete structural response is obtained by
superposing the scaled structural responses obtained by applying successively each set
of nonzero displacement boundary conditions.

The optimization problem consists of minimizing the total weight s of the panel
subject to buckling constraints g, as well as lower and upper bounds on the design variable
values. Three design variables are used. The first design variable, z,, corresponds to
the thickness of the contiguous plies oriented at any specific angle in the skin of the
panel. For example, z, in of 90° plies are placed on each side of the panel middle plane.
Since a single design variable is used, all the plies oriented at a specific angle have the
same thickness, and the thickness of the skin is eight times the value of the first design
variable. The second and third design variables, z; and z,, correspond, respectively, to
the thickness and height (z—directon in Fig. 3.8) of the stiffeners.

The history of the optimization run and the minimum weight reached after 10 design
iteratons are shown in Fig. 3.9. It can be seen that after the first 5 iterations the weight

reduction rate was small, and that convergence occurred after a plateau had been reached.

51



©0.00) f

‘\\ I H = 28 inches
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Note: Angle of lamination in the skin is

measured with respect to the x-axis.

Boundary Conditions:

y=0: u=0,v=0,8,=0 x=0: 6,=0

y=0, 2=0: w=0 Compression: u=0,v=-y/H
Shear: u=-y/H,v=0

y=28: ey=0 x=0, z=0:w=0

Compression: u=0,v=-1.0

Shear: u=-1.0,v=0 x=80: 8,=0

y=28, z=0:w=0 Compression: u=0,v=-y/H
Shear: u=-y/H,v=0
x=80,z=0: w=0

Fig. 3.8 — Eight-Cell Geodesically Stiffened Panel, Finite Element Model
and Boundary Conditions.
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For this example, the convergence criterion specifies that convergence occurs when the
relative change in the value of the objective function is smaller than 0.2%. More detailed
results are presented in Table 3.3. In the first three columns, the values of each design
\;ariab]e are presented. The value of the first buckling éonstraint and the objective
functon (weight) are given in the fourth and fifth columns. The last column gives the
derivatives of the first buckling constraint with respect to each design variable. Note
that, because the constraints are posed as g;(x) < 0 (see Eq. (3.1)), a negative gradient
component indicates that an increase in the value of the design variable would result in
a less critical constraint. The weight reduction achieved during the last design iterations
mainly comes from the reduction in the value of the stiffener thickness (design variable
z;). Note that, since the stiffeners are made of unidirectional material, their thickness
should probably be limited by design factors that have not been included in this example,
such as damage tolerance considerations. The CPU time required for a single analysis of
the structure can be broken up into two components. The first component corresponds to
the linear analysis of the structure and the calculation and assembling of the geometric

stiffness matrix. The second component represents the calculation of the eigenvalues of

-the buckling problem. The CPU time corresponding to the first component was 143 s,

and the CPU time for an iteration in the eigensolver was 15 s. The number of iterations
in the eigensolver varies during the optimization run, but generally decreases as the
optimization progresses. In this case, an average of 9 iterations were required at each
design point.

At the optimum, several buckling constraints, which correspond to different skin
buckling modes, are active. To make the stiffener buckling modes become critical,
the convergence criterion must be thightened so that few more design iterations are
performed thus yielding stiffener dimensions that will make buckling of these members

become critical. By thightening the convergence criterion, a final design for which both
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Table 3.3 - History of the Optimization Run for the Eight-Cell

Geodesically Stiffened Panel.

Z1 z2 I3 n f %%L

inch inch tnch b

0.02 0.15 0.6912 -0.7082 26.05 | <-108.2,-7.820,-3.440>
0.01753 | 0.1201 | 0.6606 -0.1618 22.20 | <-87.65,-6.403,-2.408>
0.01671 0.1018 | 0.6827 -0.0209 20.83 | <-86.64,-6.309,-1.911>
0.01656 | 0.08944 | 0.7484 | -5398E-3 | 20.54 | <-147.6,-3. 800,-0 5948>
0.01678 | 0.07693 | 0.7785 | -5.308E-3 | 20.39 | <-146.1,-4.156,-0.5526>
0.01679 | 0.07415 | 0.7883 | 1212E-4 | 20.32 | <-145.4,-4.237,-0.5363>
0.01680 | 0.07284 | 0.7945 | 3.207E-4 | 20.30 | <-145.4,4. 280,-0 5258>
0.01683 [ 0.06557 | 0.8581 | -1.363E-4 | 20.24 | <-148.0,-4.534,-0.4164>
0.01705 | 0.05704 | 0.8915 | -4.637E-3 | 20.17 | <-147.1,-4.985,-0.3793>
0.01707 | 0.05425 | 0.9103 | -6.194E-4 | 20.12 | <-146.4,-5.156,-0.3602>
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stiffener and skin buckling modes are critical has been obtained. This new design is
0.08% heavier than the one given in Table 3.3. The slight increase in weight is due
to the approximations used in the solution of the optimization problem which resulted
in the switching of the skin and stiffener buckling modes. For this new design, skin
buckling corresponds to the second buckling constraint and a limiting value v, slightly
larger than the value of 7, (7, = 1.0025%,) is used in equation (3.3).

The combined loading condition has been introduced using the scaling and superpo-
sition strategies implemented in the procedure analysis described in Section 3.3.3. In
this case, the use of displacement boundary conditions for the application of the loading
is forced by the fact that the fraction of thg load carried by the stiffeners is unknown and
varies as the desigr; is changed. 'Ihcrrerforre,rtihé values of the nodal forces that should be
applied to the stiffener and skin nodes are also unknown and cannot be used to introduce

the loading.
3.4.3 Example 3

The calculation of practical designs for composite structures typically requires the
consideration of a relatively large number of design variables. To demonstrate that such
structures can be designed with the optimization system, the design of a composite wing
rib panel that presents skin sections with different lamination sequences is performed.
The rib dimensions correspond to those used in the two previous examples and are shown
in Fig. 3.10a along with the boundary conditions. The stiffeners are symmetrically placed
with respect to the skin and a 3-cell configuration is considered. The stacking sequences
in the skin are as indicated in Fig. 3.10b. The underlying base laminate is reinforced in
the middle cell by additional plies symmetrically placed with respect to the middle plane
of the panel. The stiffeners are made of unidirectional material. The panel is subjected

to an axial stress resultant &, of 5000 Ib/in.
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Fig. 3.10 - Three-Cell Geodesically Stiffened Panel.
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The finite element model of the stiffened panel includes a total of 96 9-node elements
and 413 six-degree-of-freedom nodes. The skin is modelled using 48 (12 by 4) elements
and each stiffener is discretized with 4 elements. Nonzero displacement boundary con-

.ditions are applied at the top (y = 28 i) to simulate the compressive loading.

The optimization problem consists of minimizing the total weight f of the panel
subject to buckling consrtizj'aint:s g, material failuré constraints gy, gs2, and g;; imposed
in the skin andr the suffeners (see Fig. 3.10a). The final design must also satisfy lower
and upper bounds on the design variable values. The first six design variables, z, — z4, are
ply thickness design variables used to tailor the skin of the panel. Ply designations are
given in Fig. 3.10b next to the ply angles. For example, z, designates the thickness of
the £45° plies in the underlying base laminate. The seventh and eighth design variables
designate the thickness and height of the stiffeners.

The history of the optimization run is shown in Fig. 3.11. It can be seen that 62
exact analyses or design iterations were required to reach a minimum weight of 49.7 .
The final values of the design variables are given in Table 3.4. For comparison purposes,
a baseline design, obtained by considering only three design variables corresponding to
the skin thickness and the stiffener cross-section dimensions, had a final weight of 55.3
{b. This is a weight penalty of 11% compared to the 8 design variable problem. At
the optimum, two buckling and three side constraints are critical. The first buckling
constraint corresponds to a skin buckling mode and the second one corresponds to the
buckling of the stiffeners. The material failure constraints are inactive. For the final
design, the Lagrange muldpliers are < 98.79,70.08, 31.32,19.06,0.29 > and the results of the
verification of the Kuhn-Tucker optimality conditions [29] are presented in Table 3.4.

In summary, these three examples have shown that the optimization system can be
used to optimally design structures that present a complex buckling response. They have

also demonstrated the utility of the scaling and superposition strategies implemented in
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Table 3.4 - Final Design for the Three-Cell Panel.

Values ?LB:‘;_I

Z:j:l '\JEEL
z1 (in) 0.005t 1.00
’ zy (in) 0.129 - 1.01
z3 (in) 0.022 0.99
z4 (in) 0.005t 1.00
z5 (in) 0.017 1.00
z6 (in) 0.005t 1.00
z; (in) 0.094 0.98
zg (in) 2.35 1.03

£ (ib) 49.8

t Lower bound.

the procedure analysis for the application of combined loading conditions. Finally, the
last example has shown that the optimization system can also be used to obtain practical

solutions for problems that involve a relatively large number of design variables.
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Chapter 4
’ Analysis of Composite Cylindrical Shells

As indicated in Chapter 3, the constraints imposed on the design of the cylindrical
shells considered in the present study are evaluated using the results of a finite element
analysis. Two limiting failure modes are considered. The first failure mode is the
buckling of the shell in either an overall or a localized mode, and the second is material
failure, where first-ply failure in the skin or stiffeners is considered. In this chapter, the
details of the structural analysis of the different cylindrical shell configurations considered
in the design study are presented. In Section 4.1, the specific element used is briefly
described. Then, in Section 4.2, the finite element models and the specific boundary
conditions used for the analysis of each configuration in the case of compressive and
torsional loadings are presented. Finally, in Section 4.3, characteristics of the behavior

of geodesically stiffened shells are discussed.
4.1 Finite Element Formulation

The only element type used in the present study is the quadrilateral 9-node shell
element called EX97 that has been installed in processor ES1 of the CSM Testbed. Its
formulation is that of a continuum-based theory which leads to degenerated 3D shell el-
ements [31]. EX97 represents the assumed-natural strain (ANS) implementation of this
formulation [32]. The out-of-plane deflecions and bending rotations are approximated
independently and this results in a C° continuity of the primary variables. This also
implies that the effects of transverse shear deformation are taken into account through
the use of a first-order shear deformation theory. The primary motivation behind the de-

velopment of these shell elements has been the construction of simple and efficient finite
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elements for plates and shells that are locking-free and fit naturally into displacement-

based programs. They also yield accurate answers for coarse meshes.

4.2 Finite Element Models

The finite element models used in the design study are presented in this section.
Although the optimization system described in Chapter 3 can be used in conjunction
with any finite element model, the optimization of a structure discretized with a refined
mesh may become computationally very expensive. To reduce the computational cost,
partal models and symmewuy boundary conditions are used. In all cases, the mesh is
rectangular in topology, and restricted to 9-node quadrilateral shell elements. Each finite
element model is defined as a m,. x n,. x I, mesh where m,, is the number of elements

in the axial direction, n,. is the number of elements in the circumferential direction,

and I,. is the number of elements along the height of the stiffeners. In the case of

unstiffened shells, only m,. and n,.. need to be specified. The boundary conditions
are imposed in a cylindrical coordinate syste;n 7Thie radial, circumféfential, and axial
displacements are respectively denoted by u,, ue, and u.. Similarly, rotations around the
radial, circumferential, and axial axes are denoted by 4,, 64, and 4..

Following the presentation of each model, the results of a mesh refinement study
are given to assess the capability of the mesh density chosen for the design study to
accurately predict the two lowest eigenvalues of the buckling problem. For the mesh
convergence study, a nominal design has been chosen. The skin is 0.08 in thick with a
quasi-isotropic lamination sequence of [-45,/+45,/90,/0,]s, where the lamination angle in
the skin is measured with respect to the axis of the cylinder. In the case of geodesically
stiffened shells, the geodesic stiffeners and the rings are 1.5 in high and are 0.1 and
0.2 in thick, respectively. The lamination sequences for the geodesic stiffeners and the

rings are [Os0]r and [O4]r, respectvely, where the lamination angle in the stiffeners is
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measured with respect to their axis. For conventionally stiffened shells, the rings are
identical to those used for the geodesically stiffened shells and the stringers are 1.5 in
high and 0.1 in thick. For each case, the eigenvalues have been normalized with respect

13

to the lowest eigenvalue obtained with the most refined mesh.

4.2.1 Axial Compression

The finite element models used in the case of the unstiffened shell as well as the
geodesically and conventionally stiffened configurations subjected to axial compression
are presented in this section. For the unstiffened shell, four different meshes have
been used for the mesh refinement study. The model with 144 (12x12) quadrilateral
shell elements and 625 nodes is shown in Fig. 4.1. It represents a partial (L/2x90°)
shell-element-based model of the cylindrical shell. Symmetry conditions BC2 and BC3
are respectively imposed at midlength and at ¢ = 0° and 90°. The remaining edge is
clamped and the axial force is imposed by specifying the nonzero displacement boundary
conditions u, at every node located on this edge. The first two eigenvalues obtained with
each mesh density are presented in Table 4.1. The lowest eigenvalue obtained with the
12x12 mesh is within 2% of the one obtained with the most refined mesh and, therefore,
the 12x12 mesh is used for the design study.

For the geodesically stiffened shell, different numbers of cells are considered in the
axial and circumferential directions (see Section 2.3 for a discussion of the scope of the
design study). For these structures, the model used depends on the number of cells in
the axial direction. In the cases of one, two, and three cells in the axial direction, the
partial model represents the entire length with one cell in the circumferential direction.
See Fig. 4.2a. Each cell is discretized with a mesh of 8x8 quadrilateral shell elements.
Eight shell elements are used for each stiffener. Symmetry boundary conditions BC3 are

imposed along the edges located at ¢ = 0° and (360°/N), where N is the number of cells
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L=100in

R=85in

BCl: uw=0ug=0,u,=u,08g=0
BC2: u,=0,8g=0

BC3: ug=0,6,=0

Fig. 4.1 - Model of the Unstiffened Shell Subjected to Compression.
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in the circumferential direcdon. On the two remaining edges, the displacements in the
circumferental direction and the rotations with respect to the same axis are restrained.
The axial force is introduced by specifying the nonzero displacement boundary conditions
u:, at all the nodes located on these edges. For four and eight cells in the axial direction,
the partial model represents half the length with one cell in the circumferential direction.
See Fig. 4.2b. The mesh refinement is identical to the one used in the case of two
cells in the axial direction. The same boundary conditions are also used except that the
boundary conditions BC4 are replaced by the symmetry boundary conditions BC2. The
mesh refinement study has been performed using the 2x16 configuration (see Fig. 2.2).
The results are as indicated in Table 4.2. In this case, the mesh chosen for the design
study (16x8x1) predicts the lowest eigenvalue of the buckling problem within 9.5% of
the one obtained with the most refined mesh.

For the conventionally stiffened shell, three different configurations, 2x8, 2x24, and
2x32 are studied under axial compression. Since they all have only 2 cells in the axial
direction, the same partial model is used in all cases. The partial model discretizes
the entire length with one cell in the circumferential direction, see Fig. 4.3. Since the
first buckling mode presents a short wavelength pattern in the axial direction and only 1
half-wave between each stringer, 24 elements are placed in the axial direction and only 8
in the circumferential direction. Therefore, the skin is discretized with 192 quadrilateral
shell elements. Each stringer is discretized with 24 elements and eight elements are
placed along each ring (24x8x1 mesh). There are 288 elements and 1211 nodes in the
finite element model. The boundary conditions applied to the model are identical to
those used for the two cell geodesically stiffened geometry (see Fig. 4.2a). The mesh
refinement study has been performed using the 2x8 éonﬁguration (see Fig. 2.3). The
results are as indicated in Table 4.3. In this case, the lowest eigenvalue predicted with
the mesh chosen for the design study (24x8x1) is within 1.0% of the one obtained with
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the most refined mesh.
4.2.2 Torsion

The finite element models used in the case of the unstiffened as well as the geodesi-
cally and conventionally stiffened configurations subjected to torsion are presented in
this section. The model used for the unstiffened shell is shown in Fig. 4.4. It repre-
sents the endre shell (Lx360°) and it has 6 elements along the length and 36 around
the circumference (6x36 mesh). It includes a total of 216 elements and 936 nodes. The
shell is clamped at each end and the loading is applied by imposing nonzero displace-
ment boundary conditions. The use of the entire model has been forced by the lack of
symmetries of the first buckling mode with respect to the midlength and the generator.
The results of the mesh refinement study are indicated in Table 4.4. As indicated by the
results obtained with the 6x24 and 12x24 meshes, refining the mesh in the axial direction
does not result in a significant improvement in the accuracy of the computed eigenvalues.
This is due to the low number of axial half-waves presented by the first buckling shape
which require only a small number of elements to be accurately modelled.

For the geodesically stiffened shell, different number of cells are considered in the
axial and circumferential directions. For these structures, all the partial models discretize
the entire length, and the number of cells modelled in the circumferental direction de-
pends on the specific configuration. For the 2x4, 2x8, 2x16, and 2x24 configurations,
short half-waves well contained within each cell are obtained. Therefore, only 3 cells in
the circumferential direction need to be discretized. Although for the 3x24 and 4x24 con-
figurations the same buckling pattern is obtained, 4 cells in the circumferential direction
have been discretized to decrease the effect of the boundary conditions imposed at 4 =
0° and 15° on the buckling response. For the 2x32 configuration, the first buckling mode

presents long half-waves that extend over the entire length of the shell (see Fig. 5.4d).
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b - 4 and 8 Cells in the Axial Direction.

Fig. 4.2 - Models of the Geodesically Stiffened Shell Subjected to Compression.
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L=1001in
R=85in

BC3: ug=0,6,=0
BC4: u9=0,ux=-u°,99=0
BC5: ug=0,uy=u,6=0

Fig. 4.3 - Model of the Conventionally Stiffened Shell
Subjected to Compression.
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Table 4.1 - Results of the Mesh Refinement Study
for the Unstiffened Shell under Axial Compression

Mesh A Az
9x9 1.081 1.083
12x12 1.020 1.030
18x18 1.004 1.009
24x24 1.000 1.001

Table 4.2 — Results of the Mesh Refinement Study
for the Geodesically Stiffened Shell under Axial Compression.

Mesh A /\2

12x6x1 1.198 1.232

16x8x1 1.095 1.106
24x12x1 1.013 1.037
32x16x1 1.000 1.003

Table 4.3 - Results of the Mesh Refinement Study
for the Conventionally Stiffened Shell under Axial Compression.

Mesh Ay
16x8x1 1.025
16x16x1 1.012
24x8x1 1.010
30x8x1 1.008
30x16x1 1.000
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L=100in
R=85in

BC6: w =0wg=u,u =0,68g=0
BC7: u,=0,ug=-uyu,=0,8g=0

Fig. 4.4 - Model of the Unstiffened Shell Subjected to Torsion.
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Thus, the effect of the symmetry boundary conditions tend to influence a larger portion
of the domain. To reduce their effect, 9 cells have been modelled in the circumferentdal
directdon. However, the consideration of 9 cells in the circumferential direction does not
change the boundary conditions that must be applied along the generators. Consequently,
only the model that discretizes 3 cells in the circumferential direction is described. It is
shown in Fig. 4.5. The skin is discretized with 216 quadrilateral shell elements. Twelve
elements are placed along the length and eighteen in the circumferential direcdon. Six
shell elements are used for each stiffener (12x18x1 mesh). There are 324 elements and
1333 nodes in the finite element model. Boundary conditions BC10 are imposed along
the edges located at § = 0° and (360°/(N/3)) (360°/(N/9) for the 2x32 configuration).
Imposing u, = 0 along these two edges allows to exclude a local buckling mode that
develops along these edges when u, is free. On the two remaining edges, the displace-
ments in the axial direction and the rotations with respect to the circumferential direction
are restrained. The shear force is applied by specifying nonzero displacement boundary
conditions at all the nodes located on these edges. The mesh refinement study has been
performed using a 2x24 configuration (see Fig. 2.2). The results are as indicated in
Table 4.5a. In this case, the mesh chosen for all of the configurations, excluding the
2x32, (12x6x1) predicts the lowest eigenvalue of the buckling problem within 5% of the
one obtained with the most refined mesh. For the 2x32 configuration, the computational
requirements associated with the consideration of nine cells in the circumferential direc-
tion has forced the use of a coarser mesh. However, as previously mentioned, the first
buckling mode presents a single half-wave within each cell. Consequently a mesh of
4x4/cell can be used as indicated by the results of the mesh refinement study presented
in Table 4.5b.

For the conventionally stiffened shell, three different configurations, 2x8, 4x8, and

2x32 have been studied in torsion. For the 2x8 configuration, the low number of waves
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L=100in

R=85in

BC8: ug=uyu, =0, =0
BC9: ug=-u,u,=0,8g=0
BC10: u =0,u,=0,6,=0

Fig. 4.5 = Model of the Geodesically Stiffened Shell Subjected to Torsion.
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Table 4.4 - Results of the Mesh Refinement Study
for the Unstiffened Shell under Torsion.

Mesh Ay ’\2
6x24 1.05 1.13
6x36 1.02 1.11
12x24 1.05 1.13
6x48 1.00 1.09

Table 4.5 - Results of the Mesh Refinement Study
for the Geodesically Stiffened Shell under Torsion.

a — All the Configurations, except the 2x32.

Mesh M Az
12x18x1 1.05 - 1.06
16x24x1 1.00 1.00
20x30x1 1.00 1.00

b - 2x32 Configuration.

Mesh M
12x36x1 - '1.006
12x54x1 1.000

Table 4.6 - Results of the Mesh Refinement Study
for the Conventionally Stiffened Shell under Torsion.

Mesh Ax Az
6x24x1 1.038 - 1.118
6x36x1 1.035 1.118

12x24x1 1.003 1.063
18x24x1 1.000 1.063
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presented by the first buckling mode has allowed the discretization of the complete
shell. The resulting model is shown in Fig. 4.6a along with the boundary conditions.
The skin is discretized with 288 quadrilateral shell elements. Six elements are placed
along the length and 48 around the circumference. Each stringer is discretized with 6
elements (6x48x1 mesh). There are 480 elements and 2144 nodes in the finite element
model. The displacement in the axial direction, u., and the rotation with respect to the
circumferential direction, 6y, are restrained at both ends. The loading is applied with
nonzero displacement boundary conditions at each end. To study the 4x8 configuration,
the same mesh density has been used. Since only half of the circumference of the shell
is discretized, symmewry boundary conditions BC10 are applied along the generators
located at ¢ = 0° and 180°. For the 2x32 configuration, the entire length of the
shell and three cells in the circumferential direction are discretized using a 6x24x1
mesh. Consequently, six elements are placed along the length of the shell and 24 in the
circumferential direction. Sixrshell elements are used for each stringer. The boundary
conditions used for the 4x8 configuration are also applied for this configuration (see Fig.
4.6b). The mesh refinement study has been conducted using the 2x32 configuration (see
Fig. 2.3). The results are as indicated in Table 4.6. Comparing the results obtained
with the 6x24x1 and 6x36x1 meshes allow to conclude that no practical difference is
obtained when the number of elements in the circumferential direction is increased. The
mesh chosen for the design study (6x24x1) allows to predict the lowest eigenvalue of

the buckling problem within 4% of the one obtained with the most refined mesh.
4.2.2 Combined Axial Compression and Torsion

The finite element models used in the case of combined axial compression and torsion
are presented in this section. As for the other load cases, an unstiffened shell as well as

conventionally and geodesically stiffened configurations are studied. For the unstiffened
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L=100in
R=85in

BC8: ug=uyu=0, 8g=0
BC9: ug=-u,u,=0,6g=0

BC9 1

a — 2x8 Configuration.

L=100in
R=85in

BC8: ug=u,u=0, 6g=0
BC9: ug=-05uc=0,89=0
BC10: u,=0,u,=0,6,=0

b - 4x8 Configuration.

Fig. 4.6 = Models of the Conventionally Stiffened Shell Subjected to Torsion.
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shell, the model 1s presented in Fig. 4.7. It represents the entire shell (Lx360°) and it
has 10 shell elements along the length and 40 around the circumference (10x40 mesh).
It includes a total of 400 elements and 1680 nodes. The level of mesh refinement has
"been chosen based on the fact that, under combined compression and torsion of equal
magnitudes, the first buckling mode resembles the one obtained under torsion only. It
is recalled that under pure torsion, a 6x36 mesh allows to predict the lowest eigenvalue
within 2% of the one obtained with a 6x48 mesh. Consequently, the 10x40 mesh should
at least allow the same level of accuracy to be obtained. For the case of N, = 2700
ib/in and N, = 418.5 lb/in, the model may be slightly less accurate. However, due
computational considerations the same mesh refinement has been used.

The boundary conditions are such that the rotation around the circumferential direc-
tion, 6y, is restrained at both ends and the loading is introduced by imposing nonzero
displacement boundary conditions. Because the same components of the static displace-
ment vector are constrained for the compressive and torsional loadings, the two sets of
boundary conditions can actually be considered as two different vectors of applied mo-
tions. Therefore, only successive forward eliminations and backward substitutions are
required for the calculation of their respective static displacement solutions. Once these
solutions have been calculated, they are scaled and superposed to obtain the resulting
displacement field (see Section 3.3.3 for a discussion of the superposition and scaling
procedures).

For the geodesically stiffened shells, only two configurations, 2x8 and 2x24, are
studied under combined loads. For these studies, the model and mesh density are iden-
tical to the torsion case. The resulting model is shown in Fig. 4.8 along with the
boundary conditions. As in the case of the unstiffened shell, the displacement solution
corresponding to the combined loads is obtained by superposing the solutions obtained

from each set of displacement boundary conditions.
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L =100in

R=85in

BC11: Compression: uy =0, ug=0,u, =1u,,8g=0
Torsion: ur=0,u9=u,u,=0, 65=0

BC12: Compression: up =0, ug =0, u, = -u,, 6g=0
Torsion: U =0,ug=-u,u;=0,8g=0

Fig. 4.7 - Model of the Unstiffened Shell Subjected to
Axial Compression and Torsion.
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L=100in
R=85in

BC11:

BC12:

BC13:

Compression: ug =0, u, = u,, 8 =0

Torsion: ug=Ug Uy, =0, 8g=0 v

Compression: ug = 0, uy = -uy, 8g =0 <K ” ‘\:‘vﬁ BCl11

Torsion: ug=-u,, Uy =0,0g=0 X i’z"f"@‘%jg‘:”#?»‘
RS KSR

Compression: ug = 0, uy = (-2z/L + 1)ug, 6, =0 \"%‘S“:"ﬂmﬁ%\

N X7 ;
Torsion: ug = (-2z/L + Duy,u, =0,6,=0 R \‘;‘7/5:%‘4'/}"“."‘\
AN

Fig. 4.8 - Model of the Geodes:cally Stiffened Shélrl7S67I7)jéicrted to

Axial Compression and Torsion.
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For the conventionally stiffened shell, only two configurations, 2x8 and 2x24, are
studied under combined loads. For the the load case N, =1000 and N, =1000 ib/in,
the model used in the case of torsion has been adopted, see Fig. 4.9a. The entre
'shell is discretized and six elements are placed along the length and 48 around the
circumference. Six elements are placed along each stringer. For the load case N, =2700
and N, =418.5 ib/in, a finer mesh is used in the axial direction to more accurately
capture the first buckling mode since a short wavelength pattern is expected. For this
second load case, the entire length of the cylinder and three cells in the circumferendal
direction are discretized, see Fig. 4.9b. Twenty-four elements are placed along the
length of the cylinder and eighteen in the circumferential direction. As in the other cases

of combined loads, the complete displacement solution is obtained by superposing the

solutions obtained from each set of displacement boundary conditions.

4.3 Behavior of Geodesically Stiffened Shells

As evidenced by the literature review presented in Chapter 2, very little information
is available on the analysis and the design of composite geodesically stiffened cylindrical
shells. Moreover, most of the papers that have been published use a smeared stiffener
approach which represents the skin-stiffener assembly by an equivalent homogeneous
orthotropic plate. Since in the present study a small number of stiffeners is considered,
it is expected that the discrete stiffener assembly will influence the local and overall
behaviors of the shell. Consequently, such an approach is not used. The purpose of
this section is to develop a better understanding of the behavior of geodesically stiffened
shells and demonstrate that they can be tailored to suit the particular requirements of a
specific loading regime.

Results of preliminary studies indicate that under compressive loading, the structural

behavior of the geodesically stiffened shell falls in either one of the following two
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L=100in

R=85in

BC11: Compression: ug =0, uy =u,, 8g=0
Torsion: ug =1, Uy =0, 8g=0

BC12: Compression: ug =0, uy = -u,,8g=0
Torsion: ug = -Uy, Uy =0,8g=0

a - 2x8, N, = N, = 1000 Ib/in.

L=100in

R=85in

BC11: Compression: ug =0, uy=u,, 8 =0
Torsion: ug=u,u,=0, 6g=0 3 ‘:‘:‘ :‘: \

BC12: Compression: ug =0, uy = -u,, 69 =0 “:“\\“ ek e\ BCll
Torsion: ug=-uy u,;=0,68=0

BC13: Compression: ug = 0, uy = (-2z/L + 1)u,, 6, =0
Torsion: ug = (-2z/L + Dugy,u =0,6,=0

b - 2x8 and 2x24, Nx = 2700 1b/in N,, = 418.5 Ib/in.

Fig. 4.9 - Models of the Conventionally Stiffened Shells Subjected to
_ Axial Compression and Torsion.
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categories. In the first category, the vélué of the angle y between the stiffeners and
the axis of the cylinder (see Fig. 2.1) is large and the stiffeners behave essentally like
rings. In this case, the Poisson’s expansion of the shell creates tensile stresses in the
stiffeners. In the second category, the angle v is small, and the structural behavior of
the stiffened shell resembles more closely the behavior of a shell stiffened by stringers.
In this latter category, part of the axial load is carried by the stiffeners. Therefore,
compressive stresses developed in these members. Each category of structural behavior
is now illustrated by considering a specific example.

The example considers the 4x8 geodesically stiffened configuration (see Fig. 4.10)
subjected to axial compression only. The same nominal design used in the previous
section for the mesh convergence studies is considered. The skin is 0.08 in thick with a
quasi-isotropic lamination sequence of [-45,/+45,/90,/0.]s. The geodesic stiffeners and
the rings are made of 0° layers and are 1.5 in high and 0.1 in and 0.2 in thick, respectively.
The boundary conditions correspond to those describe in Secton 4.2.1 (see Fig. 4.2b).
To obtain different angles v, the overall length of the shell is progressively increased.
The u, component of the static displacement solutions is shown in Fig. 4.11 for three
different lengths. In each case, the magnitude of the displacements has been normalized
by the value of «,.(R,45°,L/2) of a shell with the same dimensions but stiffened with end
rings only.

In Fig. 4.11a, a length of 100 in is considered and the resulting behavior of the shell
falls in the first category described above. The stiffeners are in tension, and u, tends to be
larger in the unstiffened regions of the skin than in the vicinity of the stiffeners. As the
overall length of the shell is progressively increased, a range of angles is found for which
the tension due to the Poisson’s expansion of the shell is balanced by the compression
created by the applied compressive load. As a result, the stiffeners are subjected to a

very low level of stress and the radial deflection of the skin is almost uniform over the

81






2)'\. 110 »

a- L =100 in,y=153.2°.

¢- L =300 in, y = 24.0°.

Fig. 4.11 - », Component of the Static Displacement Solution
Corresponding to 3 Different Lengths.
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entire shell. This type of behavior is illustrated in Fig. 4.11b. In this case, the stiffeners
are only slightly compressed. As y becomes smaller, the compressive stresses in the
stiffeners increase and the static displacement pattern is changed substantially compared
0 the ones obtained for a larger value of v or for an unstiffened shell. For example, the
radial displacements in the vicinity of the stiffener intersections are now more than twice
as large as those that would be obtained for an unstffened shell. On the other hand, in
the unstiffened regions, radial displacements smaller than those that would occur in the
case of an unstffened shell are obtained. Past experiences have shown that depending
on the stiffness of the stiffeners, negative radial displacements could even occur in the
unstiffened regions. These aspects of the behavior of geodesically stiffened shells will
also be discussed in Section 5.3, titled Skin Laminate Trends. It will be seen that the
ratio of the stiffener to skin stiffnesses also has a strong influence on the magnitude of
the radial component of the static displacement solution.

This study clearly demonstrates that depending on the angle v, the geodesic stiffening
pattern can be tailored to resemble either the behavior of a ring or a stringer stiffened
shell. In the latter case, however, the curvature of the geodesic stiffeners result in the
creation of bending stresses that produce important radial displacement components.
This is a disadvantage when aerodynamics considerations require the outer surface of
the shell to be as uniform as possible as in the case of aircraft fuselages. Also, such
high displacement gradients are likely to produce critical stress states at the skin-stiffener
interface where stiffened composite structures are known to be weak. Although under
compression the tendency of the stiffeners is to push the skin outward, under tension
this tendency would be reversed and the stiffeners would tend to peel-off from the skin.

Finally, when a geodesically stiffened shell is subjected to torsion, half of the stiff-
eners are in tension and the other half are in compression. Therefore, both categories of

behavior are found over different regions of the stiffened shell. As a result, the stiffeners
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that are in compression tend to push the skin outward, and those that are in tension tend
to pull the skin inward. For example, the u, component of the static displacement solu-
tion obtained for a 2x16 geodesic configuration is shown in Fig. 4.12. The magnitude

of the radial displacements correspond to unit tangential di.splacements applied at each

end.
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Chapter 5
Design Study Results

In Chapter 3, a new optimization system, called TBOP, has been described and
tested on three simple examples. TBOP is based on the finite element package CSM
Testbed and the numerical optimization program ADS. In the present chapter, following
the outline presented in Section 2.3, it is used to conduct a preliminary design study
for minimum-weight aircraft fuselages. In Section 5.1, optimum designs of geodesically
stiffened shells subjected to axial compression, torsion, and combined compression and
torsion are obtained. In the following section, the results are analyzed and discussed.
Trends in design variables and other parameters are examined to determine what con-
ributes to a structurally efficient stiffened shell design. In Section 5.3, rends in the
design of the skin laminate of geodesically stiffened shells are discussed. Because of
the computational requirements associated with the optimization of the configurations
considered in the present study, partial models have been used. The results obtained
with these partial models are validated in Section 5.4 where the optimal configurations
are analyzed using a larger portion of the structure. Finally, Section 5.5 gives estimates
of the computational times required for the calculation of optimg designs for the classes

of structures considered in the present study.
5.1 Optimum Designs for Stiffened Shells

In this section, minimum-weight stiffened shell designs subject to constraints on
both buckling resistance and material strength are sought. Material strength constraints

considered in the analysis are maximum strain failure criterion of the skin and stiffeners.

The imposition of material failure constraints is facilitated by the repetitive nature of
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the static displacement field from cell to cell. In the case of compressive loading, a
matenial failure constraint is imposed in the skin and a second one in a stiffener. In
the case of torsional loading, three material failure constraints are considered. As in
the case of compressive loading, a constraint is imposed in the skin. The second and
third constraints are imposed in stiffeners subjected to tensile and compressive stresses,
respectively. Although a finite element analysis would allow the calculatdon of material
failure constraints close to stress concentrators, the meshes chosen for the design study
are not sufficiently refined to allow their accurate evaluatdon. Consequently, the locations
for the evaluation of these constraints (see Fig. 5.1) are such that they are far from the
stiffener intersections and edges of the shell where swress concentrations may occur.

To briefly review the scope of the design study, covered in Section 2.3, three cylinder
conﬁgurationﬂsr are considered: unstiffened shell, geodesically stffened cylinder, and
conventionally stiffened cylinder. The specific configurations and loading cases are
indicated in Table 5.1. For the geodesically stiffened configurations, the number of
cells is varicd 1n both the circumfercnﬁal and axial directions andthc minimum-weight
design corresponding to each configuration loaded in axial compression and pure torsion
is obtained. In combined compression and torsion, only the 2x8 and 2x24 configurations
have been studied. For the conventionally stiffened cylinders, a 2x8 configuration has
been studied in compression, torsion, and combined compression and torsion. To evaluate
the effect of increasing the number of stringers, 2x24 and 2x32 configurations have been
studied in compression. The 2x32 configuration has also been studied in pure torsion,
and the effect of increasing the number of rings in torsion has been studied with a 4x8
configuration. In compression, the results obtained have shown that the rings play only a
minor role. Therefore, the effect of increasing the number of rings has not been studied
for this loading case.

Skin laminates with +45, 90, and 0° plies are considered. Unidirectional material
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Fig. 5.1 - Locations for the Evaluation of the Material Failure Constraints.
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is used in the stiffeners. A minimum-gauge lower bound of 0.005 in is imposed on
the thickness of individual plies in the skin. To avoid elements with undesirable aspect
ratios, a lower bound of 0.4 in has been imposed on the height of the stffeners. A
minimum-gauge of 0.040 in has been arbitrarily imposed on their thickness. For the
unstiffened shell, three design variables are considered. They are the thicknesses of
the +45°, 90°, and 0° plies. For the geodesically stiffened shell, five design variables
are used. The first three design variables are identical to those used in the case of the
unstiffened shell, and the fourth and fifth design variables designate the thickness and
height of the geodesic stiffeners, respectively. For the conventonally stiffened shell,
seven design variables are used. As in the case of the geodesically stiffened shell, the
first three design variables designate the thickness of the + 45°, 90°, and 0° plies in
the skin. The fourth and fifth design variables designate the thickness and height of the
stringers, respectively. The last two design variables designate the thickness and height
of the rings that are located away from the ends of the shell. For all the configurations,
the final skin layup is: [-45z,/455,/90;,/0z,]1s, where an overbar is placed to indicate that
the value of the design variable has been normalized by the thickness of an individual
ply. Note that for both the geodesically and conventionally stiffened shells, the end-rings
are not considered in the design sfudy. Therefore, their dimensions are constant (0.2 in
thick and 1.5 ir high) and their weight is not included in the results. The loads applied to
the models include the axial compression (¥.), and shear (~.,) which results in torsion.
The magnitudes of the loads are 1000 and 2700 b/in in compression and 418.5 and 1000
Ib/in in torsion.

The optimization program ADS allows several choices for each of the three parts
(strategy, optimizer, and one-dimensional search) of the solution procedure for the con-
strained optimization problem. Numerous other parameters also govern the optimization

process itself, through specifying internal tolerances, bounds, convergence criteria, etc,
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Table 5.1 - Cases Considered in the Design Study.

Configuration Tvpe Compression Torsion Combined
Unstiffened X X X
1x12 Geodesic X 7
2x4 Geodesic X X
2x8 Geodesic X X X
2x8 Convenuonal X X X
2x16 Geodesic X X
2x24 Geodesic X 'S X
2x24 Conventional X X
2x32 Geodesic X X
2x32 Conventional X X
2x48 Geodesic X
3x24 Geodesic X
3x36 Geodesic X
4x8 Conventional X
4x24 Geodesic ) x
4x48 Geodesic x
8x48 Geodesic X
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for the algorithm. Based on results obtained in Ref. [30], the Sequential Convex Pro-
gramming strategy, Modified Method of Feasible Directions optimizer, and Bounded
Polynomial Interpolation one-dimensional search technique were chosen. For the con-
\;ergence criterion, a relative change of less than 0.1% in the value of the objectve

function between two consecutive design iterations is used.

The results obtained in Chapter 47 anowgd to determine the level of mesh refinement
required for the prediction of the static and buckling responses for each configuration
considered herein for compression, torsion and combined compression and torsion. The
levels of mesh refinement and the models selected for the design study are summarized
in Table 5.2. The loading is introduced using nonzero displacement boundary conditions.
Therefore, the scaling procedure implémcnted in thé procedure analysis (see Section
3.3.3) is used to scale the displacements to the level of the design load. Only one
buékling constraint corresponding to the lowest cigehvalue is imposed on the initial
design. In many cases, additional buckling constraints are automatically added by the
finite element based optimization system to guarantee convergence of the optimization
process (see Secton 3.3.4 for a discussion of the strategy used to impose the buckling

constraints).

The results of the design runs will now be presented for the different loading cases,
in the form of structural efficiency curves for the varioﬁs geometries. In the present
study, “structural efficiency” is defined as minimum cylinder weight for a given load
carrying capacity. The comparisons between geodesic and conventional configurations
will not include the differences between the cost involved in the construction of each
configuration. Detailed results which include the values of each design variable, the

constraints, and the objective function are presented in Appendix B.
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Table 5.2 -~ Mesh Refinement Requirements and
Models Used in the Design Study.

a — Unstiffened Shell.

Loading Model ) Mesh

Mpe X Nne
Axial Compression L/2 x 90° 12 x 12
Torsion L x 360° 6 x 36
Combined Compression L x 360° 10 x 40
and Torsion i

b - Geodesically Stiffened Shell.

Loading Configuration Model Mesh
Mne X Nne X ne
Axial Compression 1 cell in the L x360°/N* [ 8x 8x1
axial direction
2 cells in the L x360°/N% | 16x 8x1
axial direction
3 cells in the L x360°/N* |24x 8x1
axial direction
4 cells in the L/2x360°/N | 16x 8x1
axial direction
8 cells in the L/2 x 360°/N | 32x 8x1
axial direction
Torsion 2 cells in the L x 3(360°/N) | 12x18x 1
axial direction

4, 8, 16, 24 cells in the
circ. direction

2 cells in the L x 9(360°/N) | 8x36x1
axial direction
32 cells in the
circ. direction

3 and 4 cells in the L x4(360°/N) | 12x24x1
axial direction
24 cells in the
circ. direction

Combined Compression | 2 cells in the L x3(360°/N) | 12x18x 1
and Torsion axial direction
8 and 24 cells in the
circ. direction

IN: Number of cells in the circumferential direction
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¢ - Conventionally Stiffened Shell,

Loading_

Configuration

Model

Mesh

Mpe X Np, X I,

Axial Compression

2 cells in the
axial direction

L x 360°/N

24 x 8x1

Torsion

2 cells in the
axial direction
8 cells in the
circ. direction

Complete

6x48x1

2 cells in the

axial direction
32 cells in the
circ. direction

L x 3(360°/V)

6x24x1l

4 cells in the
axial direction
8 cells in the
circ. direction

L x 4(360°/N)

12 x48 x 1

Combined Compression
and Torsion

2 cells in the
axial direction
8 cells in the
circ. direction
1000-1000 i/in

Complete

6x48x1

2 cells in the

axial direction

8 and 24 cells in the
circ. direction
2700-418.5 ib/in

L x 3(360°/N)

24x 18 x 1
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5.1.1 Axial Compression Only

Cylinder structural efficiency versus the number of cells, for two levels of axial

' compression, N, = 1000 and 2700 lb/in, is shown in Fig. 5.2. The results presented
for the conventionally and geodesically stiffened shells in Fig. 5.2a correspond to an
increasing number of cells in the circumferential direction for 2 cells in the aiial direction.
In this figure, filled circles and squares represent the individual designs obtained for the
geodesically stiffened configurations, the empty circle and square indicate the results
obtained for the unstiffened cylinder, and finally, x’s and stars are used to indicate the
designs obtained for the conventonally stiffened shells. In Fig. 5.2b, results obtained by
considering an increasing number of cells in the axial direction for geodesically stiffened
shells with 48 cells in the circumferential direction and subjected to 2700 ib/in of axial

compression are presented. For the conventionally stiffened shell, since increasing the

number of rings does not significantly affect the designs, this case will not be considered.

As indicated by the results shown in Fig. 5.2a, compared to the unstiffened shells,
geodesically stiffened configurations with a small number of cells in the circumferential
direction do not provide any weight savings. For the 2x4, 2x8 and 2x16 configurations,
the angle v between the stiffeners and the axis of the shell (see Fig. 2.1) is too large
to allow a significant portion of the load to be carried by the stiffeners. However,
as the number of cells, and consequently the number of stiffeners, increases there is
a clear downward trend for the stiffened shell weight, particularly for the heavier load.
Among the studied configurations, the minimum cylinder weight is achieved at both load
levels by using 48 cells in the circumferential direction. This geometry weighs 76% and
68% of an unstiffened shell for the 1000 /b/in and 2700 I6/in loads, respectively. The
conventionally stiffened configurations are lighter than the corresponding geodesically
stiffened cylinders, particularly for the heavier load. For 1000 l/in, the 8 and 32
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o Unstiffened, 1000 Ib/in = Conventonal, 2700 1b/in
1000 o Unstiffened, 2700 Ib/in —a—Geodesic, 1000 1b/in

E x Conventional, 1000 Ib/in ~ —a~—Geodesic, 2700 Ib/in
800
Weight "
(Iby 600 -
400
200 f

0 [ 1 1 1 I 1 1 1 1 1 717 f

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of Cells in the Circumferential Direction

a - Increasing Number of Cells in the Circumferential Direction.

1000 ——————————————————

800 F @ Unstiffened, 2700 Ibin |
Weight P —=—Geodesic, 2700 Ib/in y
(b) 600 [ :
C — — — ‘

400 - :

200 F b

O [ 1 1 1 1 1 1 1 i '
0 1 2 3 4 S 6 7 8 9 10

Number of Cells in the Axial Direction

b — Increasing Number of Cells in the Axial Direction.

Fig. 5.2 - Structural Efficiency of Stiffened Cylinders
Subjected to Axial Compression.
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Fig. 5.2 - Structural Efficiency of Stiffened Cylinders
Subjected to Axial Compression (Continued).



cell convenuonally stiffened configurations weigh 88% and 92% of their corresponding
geodesically stiffened configuratons, respectively. For 2700 ib/in, the 8 and 24 cell
conventionally stiffened shells weigh 83% and 87% of the corresponding geodesically
stiffened configu-ation, respectively. -

Considering an increasing number of cells in the axial direction results in heavier
designs as indicated by the results shown in Fig. 5.2b which have been obtained for 48
cells in the circumferential direcuon. This is due to the increase in the value of the angle
~v resulting from an increase in the number of cells in the axial direction. The design
obtained with 8 cells in the axial direction is 12% heavier than the one obtained with
the equivalent two axial cell geometry.

The results presented in Fig. 5.2a and b correspond to an increasing number of cells
in the circumferential and axial direction, respectively. As the number of cells in the

either of these directions is changed, the angle between the stiffeners and the shell axis

is also Ehangcd caﬁsing a redistribution of the load between the skin and the stiffeners.
To isolate the effccfs of changing the stiffener density without causing a major change
into the load distribution between the skin and the stffeners, trends were also obtained
for configurations with a constant angle y between the stiffeners and the shell axis. The
minimum weights obtained for four different configurations that present the same angle
v = 24° are shown in Fig. 5.2c for a load level of 2700 i6/in. The results shown
in Fig. 5.2c indicate that as the area of unstiffened sections becomes smaller, as a
result of increasing the number of cells, the stiffened shell weight decreases. The 4x48
configuration weighs 79% of the 1x12 configuration. In all cases, buckling constraints

are the only active constraints at the optimum (see Appendix B).
5.1.2 Torsion Only

A study analogous to that for compressed cylinders is performed for cylinders under
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torsion. Because of the coupling that occurs at the laminate level between the bending
and twisting responses (D15 and D25 terms in the constitutive relation [33]), the buckling
loads depend on the direction of the applied load. The results presented in this section
'correspond to a negative torque. However, when both positive and negative eigenvalues
were obtained, constraints were imposed on the negative eigenvalues as well as the
positive‘ones to insure that buckling due to a positive torque occurs at a ioad level of
equal or higher magnitude. The minimum weights obtained for each configuration are
plotted in Fig. 5.3. The results presented in Fig. 5.3a correspond to an increasing number
of cells in the circumferental direction for 2 cells in the axial direction. In this figure,
filled diamonds and circles represent the individual designs obtained for the geodesically
stiffened configurations, the empty diamond and circle indicate the results obtained for
the unstiffened cylinder, and finally “+” and “x” symbols are used to indicate the designs
obtained for the conventionally stiffened shell. Two values of N,,, 418.5 Ib/in and 1000
Ib/in, have been considered. In Fig. 5.3b, a fixed number of cells in the circumferential
direction, 24 for the geodesic and 8 for the conventional, and an increasing number of
cells in the axial direction is considered. The results in Fig. 5.3b correspond to a single
load level, 418.5 ib/in.

Comparison of Figs. 5.2a and 5.3a shows that for equal load magnitudes, the cylin-
ders in torsion are heavier than the axially compressed cylinders. As in the case of axial
compression, only buckling constraints are critical at the optimum (see Appendix B). In
torsion, the use of even a small number of geodesic stiffeners results in sharp decreases
in weight compared to the unstiffened shells. For example, for 418.5 and 1000 ib/in, the
2x8 configuration weighs 77% and 76%, respectively, of equivalent unstiffened cylin-
ders. This is due to the changes that occur in the buckling shapes of the unstiffened
and stiffened cylinders. For the unstiffened cylinder, the first buckling mode presents 16
full waves that extend over the entire length of the cylinder. Adding stiffeners precludes
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the formation of these long waves and consequently, increases the buckling resistance of
the cylinder. Among the geodesic configurations studied, the mimimum weight is stll
achieved by using the maximum number of cells. The 32 cell geometry weighs 51%
and 50% of an unstiffened shell for 418.5 i/in and 1000 Ib/in, respectively. There is
little difference between the minimum weights obtained with the conventionally stiffened
cylinders and their corresponding geodesically stiffened configurations. For eight cells
in the circumferental direction, the conventionally stiffened shell is slightly lighter, but
at 32 cells, the opposite is true.

Contrary to the case of axial compression, the consideration of an increasing number
of cells in the axial direction results in slightly lighter designs (see Fig. 5.3b). The 4
cell geodesic configuraton weighs 94% of the equivalent 2 cell cylinder. The results
obtained by considering an increasing number of cells in the axial direction for the 8
cell conventionally stiffened geometry are also shown in Fig. 5.3b, Although a direct
comparison of the results obtained from the geodesic and conventional configurations
is not possible, it can still be concluded that the additon of cells in the axial direction
contributes t0 more important weight reductions in the case of the conventional con-
figurations that for the geodesic ones. For example, the 4x8 conventionally stiffened
cylinder weighs 88% of the 2x8 configuration.

The performance of the geodesically stiffened shell in torsion is rather deceptive. An-
other preliminary study [6] had suggested that under this loading condition, the geodesic
construction would result in lighter designs. As mentioned above, all the designs ob-
tained in this section are buckling critical. Therefore, the incapacity to substantially
decrease the weight of the cylinders can be directly related to the lack of increase in
buckling resistance. For example, the critical buckling mode obtained for the conven-
tionally stiffened 2x8 configuration, the geodesically stiffened 2x16, 2x24, and 2x32

configurations subjected to N., of 418.5 ib/in are shown in Fig. 5.4. For the conven-
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¢ Unsiffened, 418.5 Ib/in x Conventional, 1000 Ib/in
o Unstiffened, 1000 Ib/in —e—Geodesic, 418.5 Ib/in
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Weight
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' Fig. §.3 - Structural Efficiency of Stiffened Cylinders Subjected to Torsion.
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tionally stiffened shell, the first buckling mode corresponds to the first buckling mode
that would be obtained for an unstiffened shell. However, the axial waves that would
develop over the entire length of the cylinder in the case of an unstiffened configuration
' are broken by the ring. Fo; the 2x16 and 2x24 geodesii:all'y stiffened configurations, the
first buckling modes are completely different from the one obtained for an unstiffened
shell. They present short half-waves well contained within each cell. Fc;r that matter,
they resemble the first bﬁcidihg mode of a cylindrical shell stiffened with stringers and
subjected to uniform;xi;.l compression. For the shell subjected to axial compression
only, it has been observed that the best way to improve the buckling resistance was by
decreasing the fraction of the applied load carried by the skin. The addition of a small
number of stiffeners that do Jf}ot carry a 51gn1ﬁcant fraction of the load does not result
in significant increases in the buckling resistance. It is likely that the same reasoning
applies for the type of buckling modes presented by the 2x16 and 2x24 configurations
in torsion. As the number of ,,g,élls in the circumferential direction is increased to 32,
however, the first buckling mode switches to long' half-waves extending over most of
the length of the shell, and consequently, the design should benefit from such a change
in the buckling patterns. For that number of cells, however, the angle v between the
stiffeners and the axis of the shell is too small to allow the stiffeners to effectively break

the half-waves.

5.1.3 Combined Compression and Torsion

Finally, a combination of axial compression and torsion is considered. For this
study, two geodesically stiffened configurations, 2x8 and 2x24, have been arbitrarily
chosen and are subjected to two different load casés. First, equal magnitudes of axial
compression N, and torsion N, of IOOQ Ib/in are applied. For the second load case, N,

is increased to 2700 ib/in and N, is reduced to 418.5 ib/in. Minimum-weight designs for
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the geodesically stiffened shells, conventionnally stiffened shells, and unstiffened shells
are presented in Fig. 5.5. The results obtained for the same configurations subjected to
pure axial compression and pure torsion are also shown in the same figure. As in the cases
of pure torsion and axial compression only, the lightcsf geodesic designs are obtained
for the configuraton that presents the largest number of cells in the circumfercntial
direcion. For both load cases, the 2x24 geodesic configuration weighs 78% of the
2x8 geodesic configuration. Compared to the conventonally stiffened configuration,
the 2x8 geodesic configuration is only slightly heavier for equal magnitudes of axial
compression and torsion. The efficiency of the conventionally stiffened configurations
under pure axial compression results in lighter designs compared to their corresponding
geodesically suffened geometries for the 2700-418.5 i5/in load combination. The weights
obtained for 1000 ib/in of torsion are larger than those obtained for the same magnitude of
pure compression. Also, the ratios of the weight obtained under combined compression
and torsion of equal magnitudes to the one obtained under pure torsion are almost equal.
For these two reasons, it is concluded that the design of a combined-load cylinder is most
sensitive to the torsional load. As in the cases of axial compression and pure torsion,

only buckling constraints are active at the optimum.

5.2 Discussion of Design Study Results

In Section 5.1, optimum cylinder designs were presented for an unstiffened shell
as well as conventionally and geodesically stiffened cylinders. In that section, only
final cylinder weights corresponding to a given load-carrying capacity were compared.
Although comparing final weights provides an efficient way of choosing an appropriate
cylinder design, a better evaluation of the performance of the geodesic configurations
can be achieved by identifying trends in the values of the design variables as well as the

distribution of load and weight between the skin and the stiffeners. These considerations
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are discussed in this section.

5.2.1 Convergence Behavior

The history of the optimization run of the 2x24 geociesically stiffened shell config-
uration (see Fig. 2.2) subjected to an axial stress resultant N, of 2700 ib/in is used to
illustrate the convergence behavior of the design runs. The variation of the structural
weight is shown in Fig. 5.6. Between 20 and 30 design iteradons were typically re-
quired to reduce the difference in weight between two consecutive iterations to less than
0.1%. This level of convergence, however, was not sufficiently stringent to guarantee
that the values of the individual design variables are well converged. The trends that
will be discussed in this section are consequently based on non-optimal values of the
design variables and could be modified if optimal values were considered. In general,
the skin thickness design variables have a higher degree of convergence than the stiff-
ener dimensions. This is due to the fact that for the configurations with a small number
of cells, the stiffener cross-section dimensions will have only a small influence on the
weight. Moreover, in the case of axial compression, the addition of a small number of
geodesic stiffeners does not result in a significant increase in the value of the buckling
load. Therefore, under compression and for a design with a small number of stiffeners,
the thickness of the skin ply thicknesses, leaving the stiffener cross-section dimensions
practically unchanged. The resulting skin thicknesses for these cases are almost iden-
tical to those obtained for the unstiffened shells. As the number of cells is increased
for a compressive loading, the stiffeners tend to comprise a larger fraction of the final
weight, resulting in better convergence for the stiffener dimensions. However for the
torsional loading case, regardless of the number of cells, the stiffeners still make up less

than 20% of the final weight and consequently, the stiffener dimensions are not as well
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converged. In many cases, several initial designs have been considered and the lightest
of the resulung de51gns has been retamed

The dlfﬁculty in obtaining convergence is 111ustmtcd in F1g 5.7. This ﬁgure presents
:h'e results obtained for the opnmal design of geodesxcally suffencd configurations sub-
jected to 418.5 Ib/in of torsion. In Fig. 5.7a, the change in weight corresponding to
an increasing number of cells in the circumferential direction is shown. In parts b and
¢ of the same figure, variations in skin thickness and stiffener cross-sectional area are
pl;)tted, respectively. For each 6? these parameters, the results obtained by starting from
two different initial designs are ”shownr for 4, 8, and 16 cells. The results are denoted
Series A and Series B. Although starting from different initialrdesigns results in little
difference in the weights and overa.llskm thicknesses, significant differences in stiffener
cross-scctiox,;arﬂr areas are obtained.

For the 2x8 and 2x16 configurations, only one buckling constraint is critical for the

final design. Consequently, the optimality of these designs can be evaluated by using

the optimality criterion for a single constraint [29]:

8f O . e
63‘ azl 0 1= 1,...,71, (5.1)
which can be rewritten
‘ af Ogn . _
A= 62:./ Bz i= 1, et (5.2)

ﬁquation (5.2) i§ a measurc of the cost effectiveness of the ith design variable in affecting
the constraint. At the 0pt1mum, all the desxgn vanables that are not at their lower or
upper bounds should be equally cost effective in changmg the constraint. The values of
X have been calculated for several ﬁqal designs and are listed in Table 5.3. Note that
the values of A ShO;IId be as closely spaced as possible and that the normalization proce-
dure precludes compaﬁsons between columns. Irt;is seen that for the 2x32 geodesically

stiffened shell and the 2x8 conventionally stiffened shell, the values of X are relatively
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closely spaced, indicating the proximity of an optimum. Also, in each column, the values
of A associated with the skin design variables are generally more closely spaced. For the
2x8 and 2x16 geodesic configurations, however, the values of A are widely distributed,
and consequently, none of the designs presented in either column Series A or Series B
correspond to optimum designs. Thus, the differences between the designs shown in Fig.
5.7 for the 2x4, 2x8, and 2x16 configurations cannot be attributed to the occurence of
local minima but rather to the small influence of the stiffener cross-section dimensions
on the weight.

To estimate the number of desiéﬁvitéradons that would be required to converge the
values of the design variables, the optimal design of the 2x8 geodesic configuration sub-
jected to 418.5 ib/in has been considered. First, to obtain a better estimate of the optimal
stiffener dimensions, the design variables corresponding to the skin ply thicknesses were
fixed, and only two design variables, corresponding to the stiffener thickness and height,
have been considered. After 22 design iterations, the design variables corresponding
to the skin ply thicknesses were re-introduced and 21 additional design iterations were
performed. The new design, denoted Design C, is presented in columns 6 and 7 of
Table 5.4 along with the designs corresponding to Series A and Series B for the 2x8
configuration. Although the values of the cost effectiveness parameters A associated with
Design C indicate that this design is not optimum, their range has become significantly
smaller as a result of the additional design iterations. These also indicate that the addi-
tional design iteratons had a small effect on the value of the objective function as the
weight corresponding to Design C represents 99% of the one corresponding to the 2x8
configuration obtained for Series A. These further indicate that in the design of stiffened
composite cylindrical shells, one has a great deal of flexibility in the choice of the values
for design variables since several combinations of these can be found with only minor

changes in the final weight.
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Table 5.3 - Values of ) = 2L /%,

Design 2x32 Geod. 2x8 Geod. 2x16  Geod. 2x8 Conv.
Variable | Compression Torsion Torsion Compression
2700 418.5 418.5 1000
1b/in 1b/in 1b/in b/in
Series | Series | Series | Series
A B A B

z, Lb.t 100 72.0 67.9 50.0 Lb.

o 88.0 44.4 99.2 70.4 86.7 93.0

z3 87.1 46.3 95.6 L.b. 100 100

z4 91.3 63.7 72.4 100 94.0 95.3

s 100 100 41.1 72.3 76.0 95.8

Tg I.b.

P oird lb

t Indicates that this design variable is at its lower bound.

Table 5.4 - Comparison of Three Designs Obtained for the 2x8 Geodesic

Configuration Subjected to 418.5 Ib/in of Torsion

Series A Series B Design C
Value A Value A Value A
in in in
to (in) 0.0197 100 | 0.0182 67.9 0.0175 100
teo (in) 0.0293 99.2 0.0273 70.4 0.0291 100
tas (in) 0.00730 95.6 Lb. N/A 0.00793 98.6
t, (in) 0.0838 72.4 0.180 100 0.0622 90.9
hy (in) 0.881 41.1 2.37 72.3 1.44 81.8
Weight (1b) 398.4 401.4 393.7

t Indicates that this design variable is at its lower bound.
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Fig. 5.6 - Convergence History, 2x24 Shell Configuration.
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To investigate the cause for slow convergence in the values of the design variables,
the conservadve approximation used for the buckling constraint by the Sequential Convex
Programming strategy has been replaced by a first-order Taylor series approximation.
The results obtained from the two design runs which‘utilized the linear approximation
demonstrate that, for the same move limits, more rapid convergence toward optimal
values for the design variables is obtained. In Fig. 5.8, the varation in the ratio of
the maximum value of the cost-effectiveness parameter to its minimum value is shown,
calculated for 10 design cycles and with each type of approximation for the 2x8 geodesic
configurarion subjected to 418.5 ib/in of torsion. At the optimum, the values of A should
be equal and consequently the ratio of Amaz/Amin Should be 1. As indicated by this plot,
the linear approximation results in more rapid convergence in the values of the design
variables than the conservative approximaton although the difference in the structural
weights obtained from each approximation after 10 design cycles is less than 0.2%.

For nearly all cases of unsdffened and geodesically stiffened shells which were
considered, several buckling constraints were imposed on the design. Recal that the
procedure used in the present study to impose buckling constraints is based on the
examination of the derivatives of a selected range of eigenvalues with respect to the
design variables (see Section 3.3.4). To briefly review the strategy, the derivatives of all
the computed eigenvalues in a 20% range above the lowest one are examined. Then, a
new buckling constraint is set up for every eigenvalue with a derivative with respect to
any one of the design variables more than 20% different from the derivatives of those
eigenvalues that are already constrained. The number of computed eigenvalues is an
input parameter for the eigensolver which has been set to 8 in the present study. For
all the configurations studied, the first buckling mode corresponds to a skin buckling
mode. As indicated by the results presented in Appendix B, several buckling constraints

are usually automatically set up by the procedure. In several cases, two or even three
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buckling constraints are critical at the optimum. In these cases, the value of 7, in Eq.

(3.3) is incremented according to the rule

<l
=
]
p—
o

(5.3)

0.003
Fk=_k-1+(T__—l), k=2,...,8

although arbitrary, the rule given by Eq. (5.3) guarantees that a finite distance will remain
between successive groups of eigenvalues. On the other hand, the difference between
7¢-: and v, is not large enough to significantly affect the final design. In torsion, as
the optimizarion progresses, negative eigenvalues (which correspond to buckling due to
a positive torque) are found and a buckling constraint usually corresponds to one of
those. As a result, the final designs in torsion are buckling resistant for both negative
and positive torques.

Finally, the results of the mesh convergence study presented in Table 4.2 indicate
that the 16x8x1 mesh used in the design of the geodesically stiffened shell loaded in axial
compression can predict the lowest eigenvalue within 9.5% of the one obtained with the
most refined mesh. To evaluate the impact of this relatively poor accuracy on the results
obtained in the design study, new designs have been obtained for the 2x24 and 2x48
configurations subjected to axial compression. These designs are based on a 24x12x1
mesh which allows to predict the lowest eigenvalue within 1.3% of the one obtained
with the most refined mesh. The minimum weights obtained are given in Table 5.5. It
is seen that the use of a more refined mesh results in weight increases varying between
1% and 4%. Based on these results, it has not been considered necessary to redesign
the other configurations with the more refined mesh. Consequently, the discussion of the
trends in the design of geodesically stiffened shells will be based on the results obtained
with the 16x8x1 mesh.
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Table 5.5 - Final Weights Obtained with Two Mesh ﬁéﬁﬁements.

Configuration ' Mesh

' Weight Inérease

%

16x8x1 24x12x1

2x24 1000 400.0 404.1
2700 611.6 618.1

2x48 1000 328.9 337.2
2700 484.4 502.8

P
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§.2.2 Skin Thickness Trends

The trends in the total (not ply) thickness for the skin of the configurations considered
in the present study are plotted in Figs. 5.9 and 5.10." The same nomenclature and
symbols used in Sections 5.1.1 and 5.1.2 are used. Since the weight depends strongly on
the value of the total skin thickness, similar trends are obtained. They Willvconsequently
not be repeated here, and only trends in the values of individual design variables will be

discussed.

In compression, among the three design variables used to tailor the skin thickness,
only the one that designates the thickness of the 0° plies reaches its lowed bound. This
occurs for the geodesically stiffened configurations that have 16, 24, 32, and 48 cells in
the circumferential direction at both load levels, as well as for the conventionally stiffened
cylinders. This indicates that as the angle between the stiffeners and the direction of
the load becomes smaller, the design benefits from a more compliant skin which allows
a larger portion of the applied load to be carried by the stiffeners.” For an increasing
number of cells in the axial direction, the increase in skin thickness between 2 and 8
cells in the axial direction is mostly caused by an increase in the thickness of the 90°
plies. The 0°, and 45° ply thicknesses remain almost unchanged. As was the case for
the other configurations, the design variable representing the thickness of the 0° plies
remains at its lower bound. When the angle between the stiffeners and the shell axis
is kept constant, the design variable associated with the thickness of the 0° plies also

remains at its lower bound.

In the case of pure torsion, the design variable corresponding to the +45° plies is the
only one that tends to its lower bound. This occurs, at 418.5 ib/in, for the 2x24, 3x24,
and 4x24 cell configurations and at 1000 Ib/in for the configurations that present 16 or

more cells in the circumferential direction. By remaining at its lower bound, the design
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Fig. 5.9 - Skin Thickness Trends, Axial Compression.
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variable that designates the thickness of the £45° plies allows more load to be carried
by the stiffeners. This is the equivalent of the behavior of the 0° plies in the case of
axial compression. More will be said about this aspect of the design study in Section

5.3, titled Skin Laminate Trends.
5.2.3 Stiffener Dimensions, Load and Weight Fractions

The trends in stffener cross-sectional areas, load and weight fractions are discussed
in this section. The stiffener load fraction is defined as the porton of the total applied
load carried by the stiffeners; the remainder of the load is carried by the skin. The
fraction of the total cylinder weight made up by the stiffeners is called the stiffener

weight fraction.

5.2.3.1 Axial Compression

The trends in stiffener cross-sectional areas, load and weight fractions are shown in
Figs. 5.11, 5.12, and 5.13. In each of these figures, part a displays the trends obtained
by considering an increasing number of cells in the circumferential direction. The trends
obtained in the case of an increasing number of cells in the axial direction are shown in
part b, and the trends obtained for a constant stiffener angle v are shown in part c.

Increasing Number of Cells in the Circumferential Direction. For both load levels, all three
parameters remain small for 4 and 8 cells in the circumferential direction. This is due
to the large angle v between the stiffeners and the axis of the cylinder which reduces
their efficiency to carry the axial load. For 4 cells in the circumferential direction, this
angle is so large that the stiffeners are loaded in tension due to the Poission’s expansion
of the shell. As the angle v becomes smaller, as a result of an increase in the number
of cells in the circumferential directon, the portion of the load carried by the stiffeners,
the fraction of the total weight that they represent, as well as their cross-sectional area

increase. The stiffener cross-sectional area reaches its maximum for 24 cells. As the
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number of cells and stiffeners keep increasing, their cross-sectonal area becomes smaller
since the stiffeners do not have to be as rigid to carry their share of the axial load and
stabilize the skin. On the other hand, the stiffener load and weight fractions reach their
maximum for 32 cells and decrease slightly for 48 cells. For the 32 cell configuration,
the stiffeners carry 58% and 53% of the applied load for 2700 ib/in and 1000 lb/in,
respectively, and their weight represents approximately 30% of the totai weight of the
shell.

Comparing the cross-sectional areas and load fractions carried by the stringers of the
conventionally stiffened cylinders to those of the geodesically stiffened shell stiffeners
allows to measure the efficiency of the geodesic stiffeners to carry the axial load. For
cight cells, the cross-sectional area and the load fraction of the conventionnally stiffened
shell stiffeners are substantially larger than the ones of the geodesically stiffened shells.
On the other hand, for 32 cells, both stiffening patterns are almost equally efficient as
the stiffener cross-sectional areas and the fraction of the load that they carry are only
slightly different.

The same trends noted for the cross-sectional areas of the geodesically stiffened shells
can be observed for the individual dimensions (thickness and height) of the stiffeners.
For 4 and 8 cells in the circumferential direction, both dimensions remain very close
to their lower bounds. As the number of cells is increased, both dimensions follow an
upward trend until they reach their maximum for 24 cells and then decrease smoothly
for 32 and 48 cells. The only exception is for the stiffener thickness at 1000 !b/in for
which the maximum occurs for the 2x32 configuration rather than the 2x24.

Increasing Number of Cells in the Azial Direction. As the number of cells in the axial
direction is increased, the stiffener cross-sectional areas, weight and load fractions follow
a downward trend, see Figs. 5.11b, 5.12b, and 5.13b. This is due to the increasing angle

between the axis of the cylinder and the stiffeners which make these members less
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efficient in carrying the axial load. For eight cells in the axial direction, the stiffeners
carry 15% of the applied load and represent only 14% of the total weight, when compared
to 53% and 26%, respectively, for the equivalent 2 cell configuration.

Constant angle between the stiffeners and the shell azis. When the angle between the
stiffeners and the shell axis is kept constant (v = 24°), the stiffeners are in compression
and consequently, the behavior of the stiffened shell falls in the second cafcgory described
in Section 4.3. For these configurations, the stiffener cross-sectional areas decrease as the
number of cells is increased. The stiffener cross-sectional area of the 4x48 configuration
represents only 26% of the one obtained for the 1x12 geometry. On the other hand, the
percentage of the load that they carry as well as the fraction of the total weight that they
represent reach their maximum for the 2x24 configuration and remain almost constant
for the 3x36 and 4x48 configurations. This implies that as the density of the stiffeners
increases, each stiffener does not need to be as stif to carry its share of the axial load and
stabilize the skin. Comparing the results obtained for the 3x36 and 4x48 configurations
allows to conclude that although for both configurations the same fraction of the load
is carried by the stffeners, reducing the area of the inter-stiffener skin sections results
in a thinner skin and smaller cross-stiffener areas which in turn allow to achieve weight

savings. For example, the 4x48 configuration weighs 89% of the 3x36 one.

5.2.3.2 Torsion

In the case of pure torsion, the trends in stiffener cross-sectional areas, load and
weight fractions are shown in Figs. 5.14, 5.15, and 5.16. Part a of these figures displays
the rends obtained by considering an increasing number of cells in the circumferential
direction whereas the trends obtained in the case of an increasing number of cells in the
axial direction are shown in part b.

Increasing Number of Cells in the Circumferential Direction. For an increasing number of
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cells in the circumferential direction, the stiffener cross-sectional area increases for 4 and
8 cells. It reaches its maximum for 16 cells, and then decreases smoothly for 24 and 32
cells. The initial increase is explained by the change in the angle of the stiffeners which
,allows them to carry a larger fraction of the applied load- (see Fig. 5.15a). As in the
case of the stiffener cross-sectional area, the fraction of the load carried by the stiffeners
reaches its maximum for 16 cells in the circumferential direction. It then decreases
for 24 cells and increases slightly for 32 cells. The portion of the load carried by the
stiffeners is considerably lower than that for compression-loaded cylinders. The highest
load fraction is 24% for the 16 cell cylinder under 1000 ib/in. Since the largest stiffener
cross-sectional area also occured for 16 cells in the circumferential direction, it appears
that the angle v obtained for this geometry, 34°, corresponds to an optimum in terms of
partcipation of the stiffeners in the carmrying of the torsional load. However, contrary
to the case of axial compression only, the maximum in the load fraction carried by the
stiffeners does not correspond to the minimum-weight design, since reductions in weight
still occur for 24 and 32 cells.

For the conventionally stiffened shell, both the cross-sectional areas of the stringers
and the rings are shown in Fig. 5.14. In torsion, the stringers carry no axial load, and
therefore they tend to be very tall and thin. However, they influence the shape of the
buckling modes and increase the critical load of the shell. Therefore, there presence is
:-justiﬁcd. The cross-sectional area of the stringers for the two conventionally stiffened
:conﬁgurations are, in fact, significantly largef than those obtained for the geodesically
stiffened configurations.

Increasing Number of Cells in the Azial Direction. The trends in stiffener cross-sectional
area, stiffener load and weight fractions as a functon of number of cells in the axial
direction are shown in part b of Figs. 5.14, 5.15, and 5.16. Stiffener cross-sectional areas

and weight fractions decrease as the number of cells are increased. At four cells, the
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stiffener cross-sectional area is 65% of the one obtained for two cells. The first buckling
modes obtained for the 3x24 and 4x24 geometries are similar to the one obtained for the
2x24 geometry (see Fig. 5.4). Since, the addition of cells in the axial direction result
in a larger number of shorter stiffeners, each one of them does not need to be as stf to
stabilize the skin.

The fraction of the load carried by the stiffeners increases sharply between two and
three cells and then decrease slightly from three to four cells. For the 3x24 configuration,
the portion of the load carried by the stffeners represents 19% of the applied load.
It is recalled that for an increasing number of cells in the circumferential direction,
the maximum in stffener load fraction has been obtained for the 2x16 geometry, a
configuration that presents an angle y between the stiffeners and the axis of the shell
equals to the one presented by the 3x24 configuration.

Compared to the conventionally stiffened shell, there is little difference between the
ring cross-sectional areas and those of the geodesic stiffeners. On the other hand, the
stringer cross-sectional areas are significantly larger than those of the geodesic stiffeners.
Since the stringers do not carry any load in torsion, they tend to be very thin and high.
As was the case for the cylinder weight, the cross-sectional area of the stringers tends

to decrease more rapidly that the cross-sectional area of the geodesic stiffeners.
5.2.4 Summary

In summary, the results obtained for the case of axial compression indicate that for a
structurally efficient stiffened shell, the stiffeners must be designed to carry a large portion
of the load. The addition of a small number of stiffeners that make large angles from
the loading axis does not result in a significant increase in the buckling resistance of the
structure. This is due to the small amount of load carried by such stffeners. Also, since

the first buckling mode of an unstiffened cylindrical shell presents a short wavelength
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pattern, adding a small number of stiffeners does not significantly affect the buckling
pattern and no substantial increase in the buckling load is obtained. The advantage of the
conventionally stiffened shell is especially pronounced for a small number of cells in the
circumferential direction and for the heavier load. The r;:sults obtained by considering
a constant angle y between the skin and the stiffeners have also indicatgd that weight
savings can be achieved by increasing the stiffener density without changing the load

distribution between the skin and the stiffeners.

In torsion, the geodesically stiffened shell is weight competitive compared to the

conventionally stiffened configurations studied. It is interesting to note that geodesic

stiffeners that present a large angle y between the stiffeners and the axis of the shell
significantly change the distribution of static displacements and consequently the shape
of the first buckling mode from the one that would be obtained for an unstiffened shell.
The first buckling mode then presents a short wavelenght pattern and no significant
decreases in weight occur when the unstiffened sections of the skin become smaller. This
is illustrated by the results obtained from the 2x16, 2x24, 3x24, and 4x24 configurations.
On the other hand, when the angle v becomes smaller and the stiffeners become more
aligned with the shell axis, the first buckling mode switches to long half-waves. These

half-waves are slightly inclined with respect to the axis of the shell and they extend over

.- alarge portion of the shell’s length. In that case, the lack of stiffening members (such as

- _ - rings) that could break this partern precludes significant increases in buckling resistance.

5.3 Skin Laminate Trends

In the previous sections, trends in the design were obtained by studying config-
urations that present different numbers of cells in both the axial and circumferential
directions. This study has allowed identification of more efficient configurations for a

given loading regime and a comparison of the efficiency of the geodesically stiffened
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configurations with more conventional stiffening patterns. To complement these results,
it is instructive to examine how the design corresponding to a specific configuration is
affected by changes in the skin lamination sequence. This aspect of the design study
is discussed in this section for the cases of pure axial cc;mpmssion and pure torsion.
For axial compression, it has been noted (see Section 5.2.2) that for the configurations
that prcéent 16 or more cells in the circumferential direction, the design variable that
designates the thickness of the 0° plies in the skin reaches its lower bound. It is recalled
that the angle of lamination of the skin plies is measured with respect to the axis of the
cylinder. To study the effect of removing these plies from the skin, the 2x48 configu-
ration subjected to 1000 ib/in of axial compression has been considered. Starting from
the optimal design obtained with x45°, 90°, and 0° plies in the skin, a new optimal
design with =45° and 90° plies only has been obtained. For this new optimal design, the
design variable that designates the thickness of the +45° plies reached its lower bound,
and consequently, a skin laminate made of 90° plies only has been considered next. The
results obtained are given in Table 5.6a and plotted in Fig. 5.17. In Fig. 5.17, the weight
has been normalized with respect to the optimal weight obtained with +45°, 90°, and
0° plies in the skin. It is seen that as the skin becomes more compliant, as a result of
successively removing plies, the weight of the stiffened cylinder follows a downward
trend. For example, the cylinder with the [-45/45/90,,]s skin laminate weighs 81% of
the one with the [-45, 3/45; 5/90,./0]s. On the other hand, the portion of the total weight
“ represented by the stiffeners and the fraction of the applied load carried by the stiffeners
increase smoothly. This indicates that for axial compression, the design benefits from a
more compliant skin which allows more load to be carried by the stffeners. Note that
the design variable that represents the thickness of the 90° plies does not reach its lower
bound when only these plies are used in the skin laminate.

The results obtained in the present section also allow to evaluate the sensitivity of
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Table 5.6 - Skin Laminate Trends.

a - Axial Compression.

CASES
0°, 90-, 90° and 90° only
and +45° plies +45° plies
to (in) 0.005 N/A N/A
tso (in) 0.0143 0.0145 0.0176
ti45 (m) 0.00943 0005 N/A
ty (in) 0.158 0.191 0.303
h, (in) 1.09 1.09 0.86
Cylinder
Weight (ib) 328.9 266.2 252.8
Skin
Laminate! [-45,.5/45, 5/90, 5/0]5 [-45/45/90, 5] [907.,]s
! Based on a ply thickness of 0.005 in
b - Torsion.
CASES
0°, 90°, and +45° plies 0° and 90° plies
to (in) 0.0126 0.0158
too (in) 0.0339 0.0325
tiqs (in) 0.005 N/A
t, (in) 0.106 0.162
hy (in) 1.68 1.47
Cylinder :
Weight (ib) 4123 384.1
Skin
Laminate [-45/45/905.5/02.5]s [906.5/03 2] s
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the behavior described in Section 4.3 to changes in the ratio of the skin to stiffener stiff-
nesses. It is recalled that in Section 4.3, the behavior of the shell has been classified in
either of two categories depending on the values of the angle v between the stiffeners and
the axis of the cylinder. For the 2x48 configuration, thc' stiffeners are in compression,
and consequently, the behavior of this stiffened shell falls in the second category. As a
result, bending stresses which produce important radial displacement gradients develop
in the skin. Changes in the ratio of the skin to stiffener stffnesses will influence this
behavior as illustrated in Fig. 5.18 which shows the u, component of the static displace-
ment solutions corresponding to the optimal designs obtained for each skin laminate
considered. In each case, the results correspond to unit axial displacements applied at
each end. For the lamination sequence that has +45°, 90°, and O° plies, the membrane
stiffness of the skin considerably restrains the outward deflections, and consequently,
relatively small displacement gradients are obtained. As the skin stiffness decreases and
the suffener cross-sectional area increases (Figs. 5.18b and c), these gradients become
more important. For the skin laminate that has 90° plies only, the unstiffened areas of
the cylinder even display large negative radial displacements.

In torsion, the thickness of the 45° plies reaches its lower bounds for several of the
more densely stiffened configurations (see Section 5.2.2). ‘Conscquc_ndy, the effect of
removing these plies in the skin laminate has also been studied. The 2x32 configuration
subjected to 1000 Ib/in has been chosen, and the effect of removing the 45° plies in
the skin laminate is studied. The fesﬁlts are given in Table 5.6b and plotted in Fig.
5.19. As indicated in Fig. 5.19, removing the 45° plies in the skin results in lighter
designs. However the decrease in weight is smaller compared to the example studied for
axial compression only. For example, the cylinder with the [90¢.5/05.)s skin lamination
sequence weighs 93% of the one with the [-45/45/90¢.4/0,5)s skin laminate. For the
lighter design, a larger portion of the applied load is carried by the stiffeners which also
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represent a larger fraction of the total cylinder weight. Note that as a result of removing

the 45° plies, none of the other design variables went to their lower bounds.

5.4 Verifications

The design results discussed in this chapter have been obtained with the models
presented in Chapter 4. Several of these models discretize only a portion of the shell
and approximate boundary conditions are applied along lines of geometrical symmetries.
In this section, the validity of these models is investigated by considering larger mod-
els. In the case of the 2x4 configuration in compression and the 2x8 configuration in
compression, torsion and combined compression and torsion the results obtained with
the partial models have been verified with the full model. In all the other cases, larger
portions of the shell have been considered and the approximate boundary conditions used
during the design study (see Chapter 4) have been applied along the lines of geometrical
symmetries. Since the lowest eigenvalue of the buckling problem depends on the static
solution and it is more difficult to predict than the distribution of the strains, the other
component of the structural response used in the design study, it has been chosen as a
measure of the accuracy of the finite element model. The results are given in Table 5.7.
In the case of axial compression, the results obtained during the design study agree very
closely with the one obtained with the larger models. The only deviation is with the 2x8
configuration for which the lowest eigenve;il;;obtained with the partial model differs by
8% from the one obtained with the full model.

In torsion, the results are also in very good agreement, except for the 2x32 conven-
tionally stiffened shell in torsion for which a difference of 2% in the first eigenvalue has
been obtained when comparing the 3 cell model used in the optimization study with a
6 cell model. It must be noted that the choice of the model used to study this particular

geometry and loading case has been strongly influenced by the computational require-
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ments. Also, a difference of 2% in the lowest eigenvalue does not necessarily ranslate
itself into a similar increase in weight. Results presented in Section 5.2.1 have shown
that changes of less than 4% in weight may occur for models that predict the lowest

eigenvalue with as much as 9.5% of error.

5.5 Computational Requirements

In this section, CPU times required for the calculation of some of the optimal configu-
rations presented in Section 5.1 are discussed. These results complement those presented
in Section 5.2.1 where convergence characteristics have been discussed and estimates of
the numbers of exact analyses required to obtain the optimal configurations have been
given. In all the cases, the CSM Testbed processors INV, SSOL, and EIG have been
used to calculate the static response and the eigensolution, respectively. Processor INV
factors the assembled system matrix stored in sparse-matrix format, and processor SSOL
performs forward reduction and back substitution on the factored system matrix. Pro-
cessor EIG implements an iterative procedure involving a Rayleigh-Ritz approximation
and a Stodola-Type method for extracting eigenpairs [16]. In all cases, the eigenvec-
tors obtained at the previous design point have been used to start the calculation of
the eigensolution. As the optimization run progresses, this contributes to a significant
reduction in the number of iterations required to compute the eigensolution. The runs
have been performed on a Convex C220 superminicomputer located at NASA Langley
Research Center. The computer consists of two central processing units, each of which

can compute from 20 to 40 MFLOPS for a computationally-intensive calculation.

The statistics obtained are presented in Table 5.8. The number of the six-degrees-of-
freedom nodes included in the finite element model and the number of design variables
considered in the optimization problem are given in the first two columns of the table.

The CPU tme required for the calculation of the static response, the geometric stiffness
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Table 5.7 - Verifications.

Configuration | Loading Level Model A Mesh
) (1b/in) Mne X Npe X Ine

Unstffened Compression | 2700 L x 90° 1.001 |12x12x1
L/2 x 360° 0.9998 § 12 x 48 x 1
2x 4 Compression | 2700 L x 90° 1.001 [ 16x 8x1
L x360° 1.000 |16 x32x 1
2x 8 Compression | 2700 L x 45° 1018 J12x 6x1
L x360° 0.937 12x48 x 1
Torsion 418.5 L x135° 09994 | 12x 18 x 1
L x360° 1003 | 12x48x1
Combined 2700 —418 | L  x 135° 1.020 12x18x1
L x360° 1.000 12x48 x 1
2x16 Compression | 2700 L x 225° 1.035 12x 6x1
L x 180° 1043 | 12x48x1
Torsion 418.5 L x 675° |1.001 [12x18x1
L x135° 09990 | 12x 48 x 1
2x24 Compression | 2700 L x 225° 1083 |12x 6x1
L x120° 1.084 |12x48x1
Torsion 418.5 L x 45 09991 | 12x 18 x 1
L x 90° 09932 1 12x 48 x 1
2 x 32 Compression | 2700 L x 11.25° | 1118 |12x 6x1
L x 90° 1113 (1 12x48x1
2x 32 Torsion 418.5 L x 3375° [1000 |6 x24x1
Conventional L x 675° | 09796 |6 x48x 1
2 x 48 Compression | 2700 L x 75° | 1137 |12x 6x1
L x 60° 1.132 12x48x1
4 x 48 Compression | 2700 L/2x 75° [1062 |12x 6x1
L x 30° 1058 | 24x24x1
8 x 48 Compression | 2700 L/2x 75° 1.011 |24x 6x!
L/2 x 30° 1019 {24 x36x1
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matrix and its assembling is given in column 3. In the next column, the CPU time
required for one iteration in the eigensolver is given. The number of iterations in the
eigensolver required during a specific design run is problem dependent and, as mentioned
at;ove, tends to decrease as the optimization run progresses.. For the size of problems
considered in the design study, between 30 and 40 iterations were required to converge
the lowest.eigcnvalue for the inital design. As the optimization progresses, the number
of iterations usually decreased to approximately 8 and, for the last few design points,
only 2 iterations (the minimum number of iterations required to measure the degree of
| convergence) were generally required. For a design run that would require 20 design
iterations, it is estimated that approximately 120 iterations would be required in the
eigensolver. Finally, the last column gives the CPU time required for the calculation
of the derivatives of the constraints with respect to the design variables. In all cases,
the semi-analytical strategy (see Section 3.3.3) has been used. As an illustration of the
overall computational time required for the calculation of an optimal design, consider
the problem that counts 2073 nodes and five design variables. For that problem, almost
11 CPU hrs. are required to perform 20 design iterations.

As indicated by these results, the calculation of optimal designs for the class of
structures considered in the present study is computationally very intensive. It has
.. ‘orced the use of partial models which were also required to limit the amount of disk
t-;pacc storage. Finally, since the analysis, without the inclusion of the time required for
he eigensolution, is more expensive than the derivative calculations (columns 3 and 5

)f Table 5.8), it can be concluded that the use of the SA strategy results in savings over

he OFD approach. Also the amount of savings achieved tends to increase with the size

f the problem.
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Table 5.8 - CPU Times' Required for the Calculation of Optimal Designs.

Number of Number CPU tme CPU time in CPU dme for
of nodes design variables | for Analysis? | eigensolver® | derivative calc.t
(sec.) (sec.) (sec.)
639 7 84.8 9.0 81.0
1211 7 182.7 20.0 142.3
2073 5 425.1 41.0 261.6
3299 5 771.7 75.0 415.7

! The runs have been performed on a Convex C220 superminicomputer.

2 Does not include CPU time required for eigensolution.

3 Per iteration in the eigensolver.

4 Per design variable.
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Chapter 6
Global/Local Analysis and Design

The design study presented in the previous chapter is based on constraints that have
been evaluated using the “global” response of the structure. No considerations have been
given to localized effects such as the stress concentraton around a stiffener intersection
or the tendency of the stiffeners to delaminate from the skin. Considering such aspects in
a design process would require the use of much refined meshes or even three-dimensional
models and such a brute force would likely saturate even the largest computers available
today or even in the foreseeable future. This has been recognized by many researchers
in the field of structural analysis and several méthods have been developed to reduce the
cost of predicting the localized effects in complex structural configurations.

These methods are usually known as global/local analysis strategies, and although
considerable work has been reported in the literature on the development of such tech-
niques, no work has been documented on the inclusion of a global/local analysis strategy
into an optimization process. This is the subject of this chapter which describes the work
done to implement a two-dimensional to two-dimensional (sometimes called “zooming’)
global/local analysis strategy into an optimization process. The justification for address-
ing this issue in the context of this research is first outlined. Then, the methodology
of the global/local analysis and the modifications that have been made to the optimiza-
tion system previously presented in Chapter 3 are described. Finally, an example that

validates the implementation of the strategy is presented.
6.1 Justification
The economy realized in the study of complex structural configurations is normally
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the first argument put forward to justify the use of a global/local analysis strategy. These
economies result from using a refined mesh, or a computationally more expensive theory,
_over only a smaller region of the domain to predict the Iocal.izcd effects. For example, the
design of stiffened panels may be performed using beam elements to model the behavior
of the stffeners. Consequently, no local buckling of these members can be predicted. In
this case, a local model, accommodating plate elements, could be used to predict such
buckling modes and provide the design process with information on the stffener dimen-
sions that must be used to avoid local buckling of the stiffeners. Another example could
be the design of composite structures with stress concentrations. It is well-known for
composite materials that through-the-thickness stress components are sometimes respon-
sible for delaminations that result into failure of the structural component. The finite
element models used in the study of complex structural configurations, however, are
usually plate or shell models that cannot predict through-the-thickness effects. In such
a case, a local model that would implement either a refined plate or three-dimensional
elasticity theory could be used to provide the design with information on the magnitude
of the critical through-the-thickness stress components. Other examples, where local
models could be used, include the predicton of the strain gradient distribution at the
skin stiffener intersection of a stiffened panel [34] and the calculation of the stress con-
centration factor for panels with cutouts [35]. Another reason for addressing the issue
of global/local analysis and design is to allow the assessment of the feasibility and the

computational requirements of using such a strategy in a design process.

6.2 Methodology of Global/Local Analysis and Design

In this section, the methodology used for the global/local analysis is first described.
This description is based on the work presented in Ref. [35]. Secondly, the formulation

of the design problem is presented. This presentation includes the modifications that take
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into account the additional term that arises in the calculations of constraint derivatives
(see Section 3.3.3) at the local level. The details of the organization of the data base
and the new processors required for the implementation of the global/local strategy are
described in Appendix C. This work expands the capabilin';es of the optimization system

already presented in Chapter 3 and in Ref. [27].
6.2.1 Global/Local Analysis [35]

The global/local analysis stress strategy used herein is defined as a procedure to
determine local, detailed stress states for specific structural regions using information
obtained from an independent global stress analysis. It employs separate, locally refined,
finite element models for specific regions that need a more detailed interrogation. As
a result, a priori knowledge of the regions that will eventually need a more detailed
interrogation is not required.

Three main reasons may be invoked to justify the choice of this strategy. The
first reason concerns the amount of validation work that has been recently published
on both two-dimensional to two-dimensional (Ref. [35]) and two-dimensional to three-
dimensional global/llocal analysis (Ref. [36]). Secondly, as a result of the work of
Ransom, the interpolation procedures that are used in this study are now available in
the CSM Testbed. This considerably reduced the amount of work associated with the
generation of refined displacement ﬁerlds”arrxd, as such, shortened the time required for
the implementation of the strategy. Fmally, the modularity of the resultant implementa-
tion constitutes another reason for the choice of this global/local strategy. On parallel
computers, this modularity could eventually be used to perform the computations related
to each model on different processors.

The local model refers to any structural subregion within the defined global model.
The terminology of the global/local methodology presented herein is depicted in Fig. 6.1.
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The global model is a finite element model of a structural component. A region requiring

a more detailed interrogation is subsequently determined. An interpolation region is then

identified around the critical region as indicated in Fig. 6.1b. The global/local interface

boundary, indicated in Fig. 6.lc, defines the intersection ‘of the boundary of the local
model with the global model. The definition of the interface boundary may affect the
accuracy of the interpolation procedure and thus the local stress state. Criteria for defining

the interface boundary are discussed in Ref. [35].

To determine local, detailed stress states, the method requires that a finite element
analysis of the global structure is first performed to obtain its overall response. Then,
a critical region is identfied from the results of the global analysis. Finally, the global
solution is used to obtain an applied displacement field along the boundary (i.e., boundary
conditions) of an independent local model of the critical region. The applied displacement
field is computed using a spline interpolation of the displacements and rotations calculated
from a global analysis. Spline interpolation is a numerical analysis tool used to obtain
the “best” local fit through a set of points. Spline functions are piecewise polynomials
of degree m that are connected together at points called knots so as to have (m - 1)

continuous derivatives. The interpolation problem may be stated as follows:

3} bl
asz bg

(S(zi, )] = ; (6.1)
aq by

where [S(z;, %)) is a mamix of interpolated functions evaluated at ¢ points, the vector a
defines the unknown coefficients of the interpolation functions, and the vector b consists

of known values of the field 5 being interpolated based on ¢ points in the global model.
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(from Ref. [35]).
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To interpolate local values, the matrix S is formed, inverted, and multiplied by b to
compute the vector a. The vector a is then used to interpolate the local values through

the following equation:

boyi(Ti, %) = a0 + 6120 + a2y + 6372 + auziyi + asy? + aszy +arriyi+

agz;y?+agy?+ZFjr;{iln(r3j), i=1,2,...,1, (6.2)
i=1

where b,,, denotes the refined interpolafcd field, and ! the number of points for which 5

must be evaluated.
6.2.2 Optimization Problem

Although a two-level global/local strategy is used to predict the structural response,
a single optimization problem is formulated. In the terminology of optimization the-
ory, this corresponds to a one-level solution strategy. This implies that a single set of
design variables and a single objective function are defined. However, constraints can
be evaluated using the structural response obtained from either the global or the local
model. The approach used herein is consequently different from the multilevel opti-
mization strategies documented in the literature (see, for example, Refs. [37-39]). As
a result of adopting a one-level solution strategy, the formulation of the optimization
problem does not significantly differ from what has already been presented in Chapter 3.
The only major modification occurs in the calculation of the constraint derivatives at the
local level, and the formulation that must be used in this case is now presented.

The formulation used for the calculadon of the constraint derivatives with respect
to the design variables has already been presented in Section 3.3.3, Egs. (3.6)—(3.17).
For the global model, this formulation is still valid, and the developments presented in

the above mentioned section can be directly used to compute the derivatives. The key
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information in the computation of the derivatives of the three types of constraints sup-
ported by the optimization system (see Eqs. (3.3)—(3.5)) consists of the derivatives of the
static displacement solution with respect to the design variables. Once this information
is known, simple operations can be performed to obtain the &rivatives of the constraints.

In the case of a local model, the equilibrium equations can be written:

Kii Kip) fu,) _ [0
[K{,'z Kz,z] {ulc } - {R} (6.3)

(cf. 3.7), where u,, and u,. represent the unconstrained and constrained components of
the displacement vector obtained from thelocal analysis, respectively. For a local model,
contrary to the case of a global analysis, the displacement vector u,, obtained by solving
Eq. (6.3) does not need to be scaled. Scaling is unnecessary since the vector of nonzero
displacement boundary conditions, w, has been formed using the static displacement
solution corresponding to the design load. Referring to Section 3.3.3, w,, has been
extracted from u, which is scaled and represent the static displacements that occur when
the structure is subjected to the design load F,;. As a result, in the case of a local model,
s(x), the scale factor defined in Eq. 3.10, is always 1. Thus, its derivative with respect to
a design variable is 0. In this context, the derivatives of the unconstrained components

of the displacement vector are consequently given by:

dur oo dwe  dKio dK 1
_— - 1,1 -— —

dz; dz; dz; We dz; W (6.4)

K

(Compare to Eq. 3.15). In Eq. 6.4, the term —K, ;%% has been added since, in
general, the static displacement solution at the boundary of the local model is influenced
by a change in the value of the design variable z;. This term consequently represents
the change in the load distribution due to a change in the value of z;. In the case
of a global model, K, 4% is O since the boundary conditions applied to the global

model are constant. The term 4% is computed by extracting from 42« the components
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corresponding to the nodes located on the boundary of the interpolation region. These

components are then processed by the interpolation procedure to generate %= Once

i has been obtained, Eq. 6.4 can be solved for 4ix. The vectors 4 and s are then

formed into a single one and used to expand the solution vector u, into a first-order Taylor
series expansion. Then, the steps outlined in Section 3.3.3 for the calculations of the
constraint derivatives once the derivative of the solution vector with respect to a design
variable is known can be used. It is recalled that the main reason for the sensitivity
analysis to result into savings is that no new factorization of the system matrices is

required. This holds true in the case of a local model.

6.2.3 General Organization

The general organization of the calculations is shown in Fig. 6.2. The new processors
that have been developed are described in Appendix C. This organization presumes that
a previous analysis of the global model has been performed. Therefore, the regions
that will need a more detailed interrogation have already been identified. As a result,
the interpolation regions and the local model are defined immediately after the global
model has been set up. This occurs before the first exact analysis of the global model is
performed. Then, ADS is fired up and the default values assigned to the parameters that
control the optimization process can be msct.- The operations necessary for the calculation
of an optimum can then be started. These calculations are as indicated in Fig. 6.2. Note
that the optimization system supports local models that include several interpolation
regions. Such a feature is necessary, for example, in the design of stiffened structures
when one of the stiffener intersections represents the local region of interest. Because
the interpolation procedure uses surface splines, the definition of separate interpolation

regions for the skin and the stiffeners is necessary in such a case.
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Fig. 6.2 - Organization of the Calculations in the
Context of Global/Local Analysis and Design.
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6.3 Validation

In this section, an example is presented to validate the formulation presented in
the previous sections of this chapter. Since the optimizaton system has already been
validated on several examples in other sections of this study, only the new procedures that
perform the calculation of the constraint derivatives and the coordination work between

the models (see Appendix C) will be validated here.
6.3.1 Example 1

In this example, the opumal design of a rectangular panel with a central circular
cutout is considered. Examples of panels with cutouts have been used extensively by the
global/local analysis researchers to validate their strategy. This is partly due to the facts
that closed-form elasticity solutions are available, and also because the analysis of these
structures benefit particularly from using a global/local strategy. This example problem
has been analyzed in Ref. [35].

The isotropic panel considered is shown in Fig. 6.3. The overall panel length L is 20
in, the overall width W is 10 in, and the cutout radius r, is 0.25 in. This geometry gives
a cutout diameter to panel width ratio of 0.05 which corresponds to a stress concentration
factor of 2.85 (see Ref. [35]). The loading is uniform axial compression with the loaded
ends of the panel clamped and the sides free. The material system for the panel is
aluminium with a Young’s modulus of 10,000 ksi and Poisson’s ratio of 0.3.

The finite element mesh shown in Fig. 6.4 is used to model the global behavior
of the panel. It also constitutes a good approximation to its local behavior. The finite
element model has a total of 160 9-node quadrilateral elements and 600 nodes. The
element corresponds to a curved C° shell element that has been installed in the CSM
Testbed and denoted ES1/EX97.

The in-plane stress resultant distributions obtained with the global model reveal
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several features of the global stuctural behavior of this panel. They also constitute
guidelines for the definition of the boundary for the definition of the local model. Based

_on these distributions, the shaded area shown in Fig. 6.4 has been identified as a
critical region and discretized using a more refined finite element model. However, the
interpolation region used to generate the spline matrix corresponds to the entire plate.
The local model, sﬁown ih Fig. 65 has ré totél of 144 9-nbde elements and 624 nodes.
The same element used for the glébal model has been used in the refined model.

The optimization system has been épplicd to the minimum-weight design of the
plate. Two constraints are considered: a buckling constraint, and a maximum strain
failure criterion constraint evaluated along the edge of the cutout, at panel midlength.
They are evaluated using the structural response obtained from the global and the local
model, respectively. Since the material is isowropic, the strain at failure of the material
has also been assumed isotropic and set to 0.002. A single design variable, the thickness
t of the plate, is considered. The inidal design corresponds to a thickness of 0.1 in and
for this design, both constraints are violated.

For the optimal design, only the buckling constraint is active. The optimal thickness
value is 0.226 in. The optimization run has required a total of 7 design iterations, each
iteration requiring a total of 363 CPU s on a Convex C220 superminicomputer. The
history of the optimization run is shown in Fig. 6.6. In the context of global/local
analysis and design, a design iteration includes the calculation of the constraints and
their derivatves for each model.

The distribution of the longitudinal stress resultant N, at the panel midlength nor-
malized by the nominal stress resultant is shown in Fig. 6.7 for the optimum design.
Although the shape of the distribution does not change as the design is modified, the plot
shown in Fig. 6.7 indicates that to accurately predict the stress concentration factor at

the edge of the cutout, a very refined mesh must be used. Predicting this factor using a
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Fig. 6.5 — Local Finite Element Model.
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single-level analysis would require a refined mesh around the cutout which would result
in a computational cost increase for the optimization run. For example, the cost of the
buckling analysis would then substantially increase compared to predicting the buckling

load with the model shown in Fig. 6.4.
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Chapter 7
Concluding Remarks

* A preliminary design study of minimum-weight geodesically stiffened shells for air-
craft fuselages has been performed. Because of the need for an optimization tool
capable of analyzing complex structural configurations, such as the geodesically stiff-
ened shell, a new optimization system based on the finite element code CSM Testbed
and the optimization program ADS has been developed. As such, the optimization
system can be used to minimize the weight of any structure that can be analyzed
via a finite element model subject to buckling, displacement, and material failure
constraints. Three types of design variables can be defined. They correspond to the
thicknesses or orientations of individual plies of finite elements or groups of finite
elements. The third type of design variable corresponds to the size of finite elements.
It consequently allows a limited amount of shape optimization in terms of stiffener
heights to be performed. Although, the first type of design variable is referred to as
a ply thickness, it can be used to design the thickness of a component in the case
of an isotropic material. The loading can be applied using either nodal forces or
displacement boundary conditions. In the latter case, an automatic procedure has
been implemented to scale the structural response to the level of the design loads.
Both overall finite difference and semi-analytical sensitivity derivative schemes have
been implemented for the calculation of the constraint derivatives with respect to the
design variables. Finally, the number of buckling constraints that must be imposed is

determined by a procedure based on the derivatives of the eigenvalues with respect

to the design variables. The optimization system has been validated on examples that

have shown that it can be used to design structures that present a complex buckling
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response subjected to combined load conditions.

The analysis of geodesically stiffened shells subjected to compressive and torsional
loadings has provided an insight into the load distribution and prebuckling defor-
mations of the shells as the angle between the sdffe;xer and the axis of the shell is
varied. In compression, for a high value of this angle, tension due to the Poisson’s
expansion of the shell develops in the stiffeners. As the angle becomes smaller, the
stiffeners start carrying a larger portion of the axial load, and, as a result of their
curvature, generate substantial radial displacement gradients. In torsion, radial dis-
placement gradients also develop since half of the stiffeners are in tension and the
other half are in compression. For this loading condition, the skin section between
the stiffeners deforms into a doubly-curved surface as two of the stffeners that sur-
round it are in tension and tend to pull the skin inward, and the other two tend to
push it outward.

The design study has shown that minimum-weight cylinders have relatively closed
spaced stiffeners. Under pure axial compression, the minimum-weight design corre-
sponds to the configuration with the highest number of cells in the circumferential
direction. For this loading condition, the conventionally stiffened shell is more effi-
cient that the geodesically stiffened one, especially for the heavier load. Under pure
torsion, there is little difference between the minimum weights obtained for both
stiffening patterns. The same is true for combined compression and torsion of equal
magnitudes. For 2700 ib/in of compression and 418.5 ib/in of torsion, the efficiency
of the conventionally stiffened shell under pure axial compression makes the designs
obtained for this load combination lighter than the ones obtained for the geodesically
stiffened shell.

In compression, the stiffeners play a more active role as the maximum stiffener load

fraction is close to 60% compared to 25% in torsion. This is among the reasons why
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the conventionally stiffened shell is so efficient in compression since their stiffeners,
even for a small number of them, still carry a large portion of the applied compressive
load.

No consideration has been given to the difference in the manufacturing cost of the
different stiffened configurations. It is likely that since the geodesically stiffened
configurations can be filament-wound, their manufacturing cost will be lower than a
corresponding conventionally stiffened configuration.

The design study has also shown that achieving convergence in the values of in-
dividual design variables requires many more design iterations that converging the
value of the weight. The results obtained by replacing the reciprocal approximation
used for the buckling constraint by the Sequential Convex Programming strategy
by a linear approximation have also shown that convergence in the values of the
design variables may be achieved faster with the linear approximation. Although the
conservativeness of the reciprocal approximation helps during the first few design
iterations by allowing larger move limits to be used, it also decreases the rate of
convergence in the values of the design variables once a design for which some of
the constraints become critical has been obtained.

Skin laminate trends have shown that under compressive loading the design benefits
from removing the 0° plies from the skin. This is due to the more compliant skin
which allows more load to be carried by the stiffeners. The lightest design has been
obtained for a skin laminate that includes 90° plies only. For this skin laminate and
the 2x48 configuration, 58% of the applied load is carried by the stiffeners. Under
torsion, a lighter design has resulted from removing the 45° plies from the skin of

the 2x32 configuration.

o The design study has also shown that although weight savings could be achieved by

properly choosing the stiffener arrangement of the carrying structure, considerable
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savings can also be achieved by properly tailoring the skin laminate. For example,
under axial compression, a weight reduction of 20% has been obtained by removing

the 0° plies in the skin laminate.

A global/local analysis and design strategy has also been presented. The strategy
employs a single-level optimization problem. The two-level analysis procedure uses
a zooming global/local finite element technique. Constraints can be evaluated using
either the structural response obtained from the global or the local model. The semi-
analytical sensitivity analysis formulation has been modified to account for the extra
term that appears in the case of a local model. The implementation of the overall

strategy has been validated on an example.

7.1 Recommendations for Future Work

* As indicated in Chapter 5, the calculation of optimal designs for configurations that

present several thousands of degrees-of-freedom is a computationally intensive task.
The present optimization System uses a direct method for the solution of the equi-
librium equations. A possible enhancement could be to add the possibility of using
an iterative algorithm. As the optimization progresses, the static solution obtained at
the previous design point would become a very good estimate of the solution at the
current design point, resulting in a rapid convergence. Another important component
in the overall cost of the optimizau’pn was the calculation of the eigenvalues of the
optimization problem. The present algorithm uses an iterative procedure involving a
Rayleigh-Ritz approximation. It could be replaced by the Lanczos algorithm which
is especially efficient when only a few of the smallest eigenvalues are desired.

Concerning the design study, it has been shown that under axial compression and
pure torsion important displacement gradicnts develop due to the curvature of the

stiffeners. To better evaluate the impact of these displacements on the buckling
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and post-buckling responses of the stiffened shell, nonlinear analyses of the optimal
designs should be performed. Such displacements are likely to cause important
through-the-thickness stress components at the skin/stiffener interface. To evaluate
their magnitude, the zooming global/local strategy could be improved to include a

local three-dimensional model that could predict the value of these stress components.
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Appendix A
Algorithms for the Computation of an Optimal Design.

This appendix presents the flowcharts of the algorithms that are used for the com-
putation of an optimal design. These algorithms have been implemented into CLAMP

procedures. A description of each procedure is given in section 3.3.3.

Begin
Set-up an inital design
Define the finite element model
Define sublaminates
Use BDLM to build lamination sequences
Specify the nodes where the load is applied
Define the macros indicated in Table 1.1 of Ref. [27]
Use OPTI to define:
The design variables
The constraints
The objective function
Execute TB20 to start ADS
Do while convergence or the maximum number of iterations have
not been reached
Restore the value of info
If info = 1 then
Compute the value of the constraints
and the objective function

Endif
If info = 2 then
Compute the derivatives of the constraints and the
Endif objective function with respect to the design variables
n
Call the optimizer
Enddo

End.

Fig. A.1 - Procedure des_ana_iter.
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Begin
If info =1 then
Copy from library 2 to library 1
' The new values of the constraints
The updated information concerning the buckling constraints
The buckling modes and eigenvalues datasets
Delete library 2
Cg{)y information contained in library ! to library 2!
Call the procedure analysis
Use OPTI to compute the objective function
and evaluate the constraints
Endif
If info = 2 then
Call the procedure derivative.
Use OPTI to calculate the derivatives of the objective function
and the constraints with respect to the design variables.
Endif
End.

1To save disk space, datasets KMAP..nsubs.ksize and AMAP.ic2.isize are not
copied.
Fig. A.2 - Procedure branch on_info.
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Begin

End

Rebuild laminate sections (LAM.OMB.nsectl.1 datasets)
Build the stiffness matrix
Factor the stiffness matrix
If displacements are specified

For each load case

Compute the static displacements
Compute the scale factor

Else (forces are applied)

Compute the static displacements
Endif
If displacements are specified

Use the superposition principle

to obtain the static displacements

corresponding to the complete loading condition
Endif
If strain constraints are imposed

Compute the strains
Endif
If buckling constraints are imposed

Compute and assemble the geometric stiffness matrix

Compute the eigenvalues, using, if available, the eigenvectors
E (aliaga.ined at the previous design point as initial trial vectors

n

Fig. A3 - Procedure analysis.
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Find the se&ucncc number of the dataset containing the design variables
Transform the value of the design variables into macrosymbols
Transform the type of the design variables into macrosymbols
If an exact analysis is required
Perform an exact analysis
Endif B
For each design variable z;
Compute Az;, 1/Az;, and -1/Az;
Perturb z;
If the design variable is a height (type = 3)
Execute processor E
Endif
Rebuild the lamination sequences
(Execute processors BDLM and LAU)
Copy the new constitutive equations to library 1
Compute and assemble KP, the stiffness matrix corresponding to the
perturbed design T
If finite difference formulation is used then
Factor KP
If loading is applied using nonzero boundary conditions then
Compute perturbed displacement vector
corresponding to each load component
Rerrieve the scale factor
corresponding to each load component
Else (Loading is applied using nodal forces)
Compute perturbed displacement vector
Endif
Form the total displacement vector
Else (sensitivity analysis is used)
Use a finite difference formula to compute dK/dz;
If loading is applied using nonzero boundary conditions then
For each load component
Compute du/dz;
Compute dR/dz; (see Eq. 3.14)
Else
Compute for du/dz;
Endif
Form the total displacement vector
Endif

Fig. A.4 - Procedure derivative.
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If buckling constraints are imposed

Compute and assemble KGP, the geometric stiffness matrix
corresponding to the perturbed design.
Retrieve eigenvalues corresponding to the current design
if a finite difference formulation is used then
Solve the eigenvalue problem
Compute the derivative of the computed eigenvalues
with respect to z;
Else (sensitivity analysis is used)
Use a finite difference formula to compute dK /dz;
Compute the derivative of the computed eigenvalues
with respect to z;
Endif
Save the derivatives of the computed eigenvalues on a dataset
If point strain constraints are imposed then
E Cha_:)fmputca strains corresponding to the perturbed design
n
Set the design variable to its original value
If the design variable is of type 3 (height) then
Execute processor E
Endif
Execute processor OPTI to compute the derivative of the
constraints with respect to this design variable

End of the loop on the design variables
End.

Fig. A.4 - Concluded.
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Appendix B
Design Data for Optimum Cylinder Configurations

Table B.1 - Unstiffened Cylinder Design Data.

a - Skin Laminate = [-45/ + 45/90/0]s.

COMPRESSION TORSION
1000 2700 418.538 1000
{(Ib/in) (1b/in) (Ib/in) (Ib/in)
zy ty (in) 0.00759 0.0130 0.0306 0.0415
T3 tog (in) 0.0303 0.0483 0.0402 0.0623
T3 teas (in) 0.0167 0.0278 0.00734 0.0118
Skin Thickness (in) 0.142 0.235 0.171 0.255
Cylinder Weight (Ib) 4333 712.0 519.9 7757
Buckling 6E-04, 1.4E-03, 9E-04 0.003
8E-04 8E-04
Skin Strength -0.83 -0.72 -0.86 -0.78
COMBINED COMPRESSION AND TORSION
N = 1000, = = 2700,
Nzy = 1000 lb/in Ngy = 4185 1b/in
z; to (in) 0.0458 0.0392
T3 tgg (in) 0.0627 0.0487
T3 tigs (in) 0.0172 0.0254
Skin Thickness (in) 0.286 0277
Cylinder Weight (Ib) 869.1 843.7
Buckling 0.002 3E-04
Skin Strength -0.86 -0.84

z; = Design Variables )
Constraints g(i) are feasible when negative, violated when positive, range: —1 < g(i) < o©
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b - Skin Laminate = [-45/ + 45/90]s.

COMPRESSION
1000
. (16/in)

z) tgo (in) 0.0339

T3 ligs (171) 7 0.0201

Skin Thickness (in) 0.148

f Cylinder Weight (Ib) 451.3

Buckling 4E-04,-0.13

Skin Swtrength -0.91

z; = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: —1 < ¢(i) < o
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a — Skin Laminate = [-45/ + 45/90/0]s.

Table B.2 - Geodesically Stiffened Shell Design Data (Compression, Torsion).

COMPRESSION TORSION

1000 2700 418.538 1000

(1b/in) (16/in) (1b/in) (Ib/in)
2x4
z) to (in) 0.005 0.00887 0.0201 0.0268
z3 teg (in) 0.0328 0.0522 0.0302 0.0378
3 tegs (in) 0.0157 0.0272 0.00741 0.0151
z4 1, (in) 0.04t 0.0457 0.0715 0.0982
z5 b, (in) 0.4t 0.424 0.999 1.400
Skin Thickness (in) 0.138 0.231 0.130 0.190
Cylinder Weight (1b) 422.8 704.2 404.3 592.9
Stiff. Load Frac. (%) T+ T 37 33
Sdff. Weight Frac. (%) 0.4 0.2 2.0 2.6
Buckling -0.004, -6E-04, 7E-04 8E-04,

2E-04, 0.003, -0.07

-0.003, 0.004,

-0.003 0.001,

-0.001, -0.01

-0.004,

-0.009
Skin Strength -0.80 -0.68 -0.83 -0.78
Stff. Strength T N/A N/A -0.96 -0.93
Stiff. Strength C -0.99 -0.98 -0.96 -0.92
2x8
z1 to (in) 0.00s? 0.00559 0.0197 0.0265
z3 teg (in) 0.0329 0.0551 0.0293 0.0408
Z3 tags (in) 0.0159 0.0271 0.00730 0.0128
z4 t, (in) 0.04t 0.0431 0.0838 0.122
z5 hy (in) 0.4t 0.432 0.881 1.295
Skin Thickness (in) 0.139 0.230 0.127 0.186
Cylinder Weight (Ib) 4272 702.5 398.4 589.9
Stiff. Load Frac. (%) 02 0.1 6.5 7.1
Saff. Weight Frac. (%) 1.0 04 29 42
Buckling 0.006 8E-04,-9E-04, 6E-04,-0.02, 7E-04

- 1E-03,-0.01, 0.05
-0.01

Skin Strength .80 -0.65 -0.83 0.75
Stff. Swength T N/A N/A 0.92 -0.87
Suff. Strength C 0.95 -0.92 -0.91 -0.86
t Lower bound.

Stiffeners are in tension.

z; = Design Variables

Constraints () are feasible when negative, violated when positive, range: -1 < g(i) < o0
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

COMPRESSION TORSION

1000 2700 418.538 1000

(Ib/in) (1b/in) (1b/in) (1b/in)
2x16
z o (in) 0.00st 0.005 0.0117 . | 0.0162
5 tgo (in) 0.0360 0.0557 0.0315 0.0474
3 tags (in) 0.0124 0.0238 0.00505 0.005t
z4 ty (in) 0.100 0.113 0.0991 0.146
z5 hy (in) 1.238 1.223 1.28 1.682
Skin Thickness (in) 0.131 0.217 0.1065 0.147
Cylinder Weight (lb) 4215 690.1 3524 502.0
Suff. Load Frac. (%) 8.8 7.4 17.2 24.5
Stff. Weight Frac. (%) 6.3 45 8.0 10.7
Buckling 0.004 9E-04,-0.08, 8E-04 8E-04

-0.04

Skin Strength -0.80 -0.69 0.81 -0.66
Stiff. Swrength T N/A N/A 0.89 -0.81
Stiff. Strength C -0.90 0.79 0.88 -0.79
2x24
z1 to (in) 0.00s" 0.00st 0.0105 0.0205
23 tgo (in) 0.0298 0.0483 0.0271 0.0366
z3 tas (in) 0.00822 0.0102 0.005 0.00501
z4 g (in) 0.180 0.296 0.0732 0.117
zs hy (in) 1.64 1.85 1.35 1.447
Skin Thickness (in) 0.102 0.147 0.0952 0.134
Cylinder Weight (I5) 400.0 611.6 319.4 458.9
Suff. Load Frac. (%) 39 50.7 9.5 17.8
Stff. Weight Frac. (%) 22 26.7 93 11.0
Buckling 8E-04,-TE-03, 8E-04, 9E-04 3E-04

-0.02,-0.01, 0.074

-0.03,-0.03
Skin Strength -0.83 0.70 0.80 -0.62
Stff. Strength T N/A N/A 091 0.83
Stiff. Strength C -0.88 0.78 0.90 -0.80
t Lower bound.

z; = Design Variables

Constraints g(#) are feasible when negative, violated when positive, range: —1 < g(i) < co




Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

COMPRESSION TORSION
1000 2700 418.538 1000
(1b/in) (1b/in) (1b/in) (1b/in)
2x32
z, to (in) 0.005t 0.00st 0.00929 0.0126
z, tog (in) 0.0245 0.0357 0.0243 0.0339
z3 tiqs (in) 0.00599 0.0120 0.005% 0.00s?
z4 t, (in) 0213 0.267 0.0607 0.106
zs h, (in) 1.32 1.54 1.34 1.68
Skin Thickness (in) 0.0779 0.130 0.0874 0.1130
Cylinder Weight (1b) 360.2 552.8 298.2 4123
Stiff. Load Frac. (%) 53 576 143 21.1
Stff. Weight Frac. (%) 30 286 10.8 16.7
Buckling 0.001, 9E-04 8E4, 3E4,
-0.06 -3E4, 0.001,
7E4, -3E4,
0.17, -0.002,
0.007 -0.002,
-0.01
Skin Strength -0.85 -0.74 078 -0.58
Suff. Strength T N/A N/A 092 -0.85
Stiff. Strength C -0.88 -0.78 091 -0.83
2x48
zy o (in) 0.00st 0.0051
z2 toy (in) 0.0143 0.0266
z3 ty45 (in) 0.00943 0.0135
4t (in) 0.158 0.180
zs hy (in) 1.093 1.261
Skin Thickness (in) 0.0762 0.117
Cylinder Weight (1b) 3289 484.4
Stiff. Load Frac. (%) 52 53
Stff. Weight Frac. (%) 29 26
Buckling 7E-04,-0.03, 8E-04,
-0.04,-0.05, -0.06
-0.05
Skin Strength 0.87 0.73
SGff. Strength T N/A N/A
Stff. Strength C -0.88 -0.74
t Lower bound.

z; = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: ~1 < g(i) < co
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

COMPRESSION

2700

(16/in) "
4x48
z1 to (in) 0.005t
T2 tgo (m\ 0.0329
z3 taas (in) 0.0133
T4ty (in) 0.177
rs hy (in) 0.974
Skin Thickness (in) 0.129
Cylinder Weight (1b) 495.3
Stff. Load Frac. (%) 39.0
Stiff. Weight Frac. (%) 21.0
Buckling 7E-04
Skin Strength 0.65
Sdff. Strength 0.73
8x48
zy to (in) 0.005
I tgo (m) 00465
I3 tt45 (zn) 00126
T4ty (in) 0.1436
zs hy (in) 0.735
Skin Thickness (in) 0.154
Cylinder Weight (1) 544.1
Suff. Load Frac. (%) 15.0
Suff. Weight Frac. (%) 14.0
Buckling 9E-04
Skin Strength 0.54
Stiff. Suength 0.7

t Lower bound.
z; = Design Variables .
Constraints g(i) are feasible when negative, violated when positive, range: —1 < g(f) < oo
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

t Lower bound.

TORSION
418.538
(1b/in)
3x24
I to (tn) 0.00642
L2 tgo (tn) 0.0296
Z3 tegs (1n) 0.00st
T4ty (in) 0.0969
zs h, (in) 0.886
Skin Thickness (in) 0.0920
Cylinder Weight (Ib) 309.3
Stiff. Load Frac. (%) 19.4
Stiff. Weight Frac. (%) 94
Buckling 0.002
Skin Strength -0.80
Stff. Strength Tension -0.89
Suff. Strength Comp. -0.87
4x24
Ty tg (in) 0.0837
T2 tgo (lﬂ) 0.0272
T3 taas (in) 0.00st
T4 ty (ﬂl) 0.0734
zs h, (in) 0.876
Skin Thickness (in) 0.0912
Cylinder Weight (Ib) 3015
Stiff. Load Frac. (%) 18.8
Stiff. Weight Frac. (%) 79
Buckling -0.001,
-0.15
Skin Strength -0.80
Stiff. Strength Tension -0.88
Stiff. Strength Comp. -0.86

z; = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: —1 < g(i) < oo

182



Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

COMPRESSION
2700
(1b/in)
1x12
z1 to (in) 0.005t
z2 tyg (in) 0.0486
T3 tt.‘s (m) 0.0167
z4 tg (in) 0.355
z5 hy (in) 1.87
Skin Thickness (in) 0.174
Cylinder Weight (Ib) 628.7
Stff. Load Frac. (%) 295
Suff. Weight Frac. (%) 15.8
Buckling 9E4, -0.06
Skin Strength -0.67
Saff. Strength Comp. -0.78
3x36
zy to (in) 0.005t
T3 tgo (in) 0.0386
Z3 tt45 (lﬂ) 0.0144
T4 tg (171) 0.235
zs hy (in) Lo?
Skin Thickness (in) 0.145
Cylinder Weight (1b) 554.0
Siff. Load Frac. (%) 399
Suff. Weight Frac. (%) 203
Buckling 9E4,
0.004,
-0.006,
-0.01,
-0.04,
-0.04
Skin Strength -0.69
Stff. Strength Comp. 0.75

t Lower bound.
z; = Design Variables
Constraints g(1) are feasible when negative, violated when positive, range: -1 < ¢g(i) < c©
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

t Lower bound.

b — Skin Laminate = [-45/ + 45/90];.

COMPRESSION

1000

(Ib/in)
2x48
Ty tgo (zn) 00145
T2 ti45 (111) OOOSt
z3t, (in) 0.191
x4 hy (in) 1.09
Skin Thickness (in) 0.049
Cylinder Weight (Ib) 266.2
Suff. Load Frac. (%) 69.0
Saff. Weight Frac. (%) 4.0
Buckling 8E-04
Skin Strength 0.92
Stiff. Strength 0.85

¢ — Skin Laminate = [90]7.

COMPRESSION
1000
(Ib/in)
2x48
I, tgg (17’1) 0.0176
Iy t, (in) 0.303
z3 hy (in) 0.860
Skin Thickness (in) 0.035
Cylinder Weight (1) 2528
Suff. Load Frac. (%) 8%.0
Suff. Weight Frac. (%) 51.7
Buckling 3E-04,
-0.007
Skin Strength -0.97
Stff. Strength 0.89

z; = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: —~1 < g(i) < oo
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

d - Skin Laminate = [90/0];.

’ TORSION
1000
(1b/in)
2x32
Tty (in) 0.0158
Z2 tgo (zn) 00325
z3 1, (in) 0.162
z4 h, (in) 1.47
Skin Thickness (in) 0.0967
Cylinder Weight (1b) 384.1
Suff. Load Frac. (%) 43.1
Stff. Weight Frac. (%) 234
Buckling 6E4,
6E4,
-0.015
Skin Strength -0.70
Stff. Strength Tension <0.76
Suff. Strength Comp. -0.73

z; = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) <
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

e = 24x12x1 Mesh.

COMPRESSION

N, = 1000 N, =2700
x4 :
zy to (in) 0.00st 0.005t
T2 tgg (in) 0.0301 0.0494
I3 ti45 (m) 0.0100 0.0116
z4 t, (in) 0.160 0.291
zs hy (in) 143 168
Skin Thickness (in) 0.110 0.155
Cylinder Weight (1b) 404.1 618.1
Sdff. Load Frac.(%)

Stff. Weight Frac. (%) 16.7 23.6
Buckling 5E-4, 6E-04,

-3E4, -0.01,

-0.02, -0.03,

-0.05 -0.03

-0.04
Skin Strength
Sdff. Strength T
Suff. Strength C
2x48
z, o (in) 0.00s" 0.005t
z2 tgo (in) 0.0178 0.0278
3 t1qs (in) 0.0105 0.0142
z4 t, (in) 0.140 0.183
zg hy (in) 0.906 127
Skin Thickness (in) 0.0875 0.122
Cylinder Weight (1) 3372 502.8
Stiff. Load Frac. (%)
Stff. Weight Frac. (%) 21.0 259
Buckling 9E4, 7E-04,
-TE4, -0.02,
-0.04 -0.08,
-0.09,
-0.09,
0.1
Skin Strength ' -0.70
Sdff. Strength T -0.83
Sdff, Strength C -0.73

t Lower bound.
z; = Design Variables
Constraints g(¢) are feasible when negative, violated when positive, range: —1 < g(i) < oo
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Table B.3 — Geodesically Stiffened Shell Design Data
Combined Compression and Torsion.

z; = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) < o0
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COMBINED COMPRESSION AND TORSION
N, = 1000, - N = 2700,
Nz, = 1000 Ib/in Nz, = 4185 Ib/in
2x8
z; g (in) 0.0251 0.00935 -
T2 tgo (11‘1) 0.0478 00581
T3 taqs (in) 0.0188 0.0288
T4ty (in) 0.122 0.0651
z5 hy (in) 1.48 1.24
Skin Thickness (in) 0.221 0.250
Cylinder Weight (1b) 699.5 7733
Sdff. Load Frac. Tors. (%) ~72 38
Stiff. Load Frac. Comp. (%) 0.8 0.5
Stff. Weight Frac. (%) 3.9 1.5
Buckling 9E-4, -8E-04,
-0.02 1E-3,
-0.01,
-0.03
Skin Strength -0.84 0.70
Sdff. Strength T -0.92 0.97
Suff. Strength C -0.87 0.90
2x24
z1 to (in) 0.00501 0.005t
T2 tgo (in) 0.05%6 0.0526
T3 ti45 (zn) 0.00651 0.00787
z4 ty (in) 0.155 0.312
zs hy (in) 1.50 1.73
Skin Thickness (in) 0.142 0.147
Cylinder Weight (Ib) 5424 6052
Suff. Load Frac. Tors. (%) . 26.1 375
Suff. Load Frac. Comp. (%) 40.0 316
Sdff. Weight Frac. (%) 202 26.2
Buckling 0.001, 8E-04,
-0.01 -0.08
Skin Strength 07 .70
Suff. Strength T -0.96 -0.83
Sdff. Strength C -0.72 073
t Lower bound.




!‘\

Other Designs

Table B.4 -~ Geodesically Stiffened Shell Design Data

btained in Torsion.

TORSION

418.5

(16/in)
2x4
ESREA) (m) 0.0206
T3 tgo (in) 0.0285
£3 tigs (in) 0.00716
z4 ty (in) 0.146
zs5 hy (in) 1.063
Skin Thickness (in) 0.127
Cylinder Weight (Ib) 404.8
Suff. Load Frac. (%) 6.2
Suff. Weight Frac. (%) 46
Buckling 7E-04
Skin Strength -0.83
SUff. Strength T 0.96
Suff. Strength C -0.96
2x8
zy tp (in) 0.0182
z7 tgg (in) 0.0273
T3 ti4s (m) 00057
T4ty (in) 0.180
zs hy (in) 2.37
Skin Thickness (in) 0.111
Cylinder Weight ({b) 401.4
Stiff. Load Frac. (%) 14.6
Stff. Weight Frac. (%) 115.8
Buckling 0.003
Skin Strength -0.83
Stiff. Strength T -0.87
Stiff. Soength C -0.86

t Lower bound.
z; = Design Variables
Constraints g(:) are feasible when negative, violated when positive, range: —1 < g(i) < oo
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Table B.4 - Geodesically Stiffened Shell Design Data
Other Designs Obtained in Torsion (Continued).

TORSION

418.5

(ib/in)
2x16
Z1 to (zn) 0.0107
z9 tgg {in) 0.0272
I3 iiqs (m) 0.00502
x4ty (in) 0.150
z5 h, (in) 1.95
Skin Thickness (in) 0.0958
Cylinder Weight (lb) 355.4
Suff. Load Frac. (%) 359
Stiff. Weight Frac. (%) 273
Buckling 8E-04
Skin Strength -0.84
Suff. Strength T -091
Stff. StrengthC -0.90

z; = Design Variables ]
Constraints g(i) are feasible when negative, violated when positive, range: —1 < g(i) < o
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Table B.5 - Conventionally Stiffened Shell,(Compression and Torsion).

COMPRESSION TORSION
1000 2700 4185 1000
(1b/in) (1b/in) (Ib/in) (1b/in)
2x8
z, to (in) 0.005' 0.005 0.0164 0.0236
z3 tgo (in) 0.0258 0.0424 0.0304 1 0.0442
T3 tiqs (in) 0.00767 0.00976 0.00516 0.00821
z4 t, (in) 0479 0.655 0.176 0.0959
zs h, (in) 2.11 2.87 2.49 5.00
z¢ t, (in) 0.04t 0.0575 0.0922 0.0951
z7 h, (in) 0.4f 0.592 120 1.4537
Skin Thickness (in) 0.0922 0.134 0.114 0.169
Cylinder Weight (ib) 3739 580.9 392.3 563.0
Stff. Load Frac. (%) 55.7 65.5 N/A N/A
Stringer Weight Frac. (%) 24.7 29.5 102 79
Ring Weight Frac. (%) 02 03 1.0 0.9
Buckling -0.002, -8E4, 4E-4, -0.005,
8E-4, 9E-4, -0.002, -0.002,
-3E4, 7E4, -0.06, 0.02,
-0.003, -0.009, -0.23 -19
-0.009 -0.01,
-0.015
Skin Strength -0.87 0.79 0.79
Stringer Strength -0.88 -0.79
2x74 and 2x32 2x32 %34 2x32
zy to (in) _0.005t 0.005 0.00934
z tgo (in) 0.0170 0.0325 0.0190
3 tass (in) 0.00899 0.0119 0.00st
z4 t, (in) 0.228 0.402 0.08f
zs h, (in) " 1.06 143 230
z¢ 1, (in) 0.04t 0.0725 0.0843
z7 h, (in) 0.4 0.882 1.13
Skin Thickness (in) 0.0799 0.123 0.0767
Cylinder Weight (Ib) 3323 5326 304.3
Stff. Load Frac. (%) 53.5 62.3 N/A
Stringer Weight Frac. (%) 294 275 220
Ring Weight Frac. (%) 0.2 0.5 13
Buckling ~-0.003, -0.003, -1E4,
-8E4, -0.001, .03,
-0.001, 7E-4, -0.05
-0.001, 0.001, 0.06
-0.002, -0.003, 0.1
-0.004, 0.01,
-0.007 -0.01
Skin Strength 0.87 0.78 -0.74
Stringer Strength -0.87 -0.78 N/A
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Table B.5 — Conventionally Stiffened Shell, (Continued).

TORSION
, 418.5
(1b/in)
4x8
zy tg (in) 0.0115
o tgo (m) 0.0243
I3 tt45 (m) 0.00852
T4 t, {in) 0.08f
z5 hy (in) 2.00
z6 L, (in) 0.0674
z7 h, (in) 0.925
Skin Thickness (in) 0.0958
Cylinder Weight (/b) 3437
Stff. Load Frac. (%) N/A
Stringer Weight Frac. (%) 42
Ring Weight Frac. (%) 22
Buckling -0.003,
0.001,
-9E-4,
-0.005,
-0.02,
-0.02
Skin Stength -0.84

1 Lower bound.
z; = Design Variables
Constraints g(7) are feasible when negative, violated when positive, range: —1 < g(i) < oo
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Table B.6 — Conventionally Stiffened Shell Design Data
Combined Compression and Torsion.

COMBINED COMPRESSION AND TORSION

N = 1000,
Nzy = 1000 Ibjin

N, = 2700,
Nzy = 4185 lb/in

>

2x8

Iy to (m)

T3 tgo (in)

T3 tygs (in)

z4 ty (in)

zs5 hy (in)

zs t, (in)

z7 h, (in)

Skin Thickness (in)
Cylinder Weight {{b)
Stringer Load Frac. Comp. (%)
Stringer Weight Frac. (%)
Ring Weight Frac. (%)
Buckling

Skin Strength
Sdff. Strength C

0.0300
0.0520
0.0110
0.151
3.26
0.114
1.18
0.208
684.1
154
6.6

1.0
0.001,
0.001
-0.01
-0.02

-0.79
-0.93

0.00500
0.0590
0.00881
0.733
2.57
0.0611
0.710
0.163
6714
64.1
256
0.4
-0.003,
0.001,
6E4,
4E4
-0.002
-0.007
-0.02
-0.79
-0.79

z; = Design Variables

Constraints g(7) are feasible when negative, violated when positive, range: —1 < g(i) < oo
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Appendix C
Organization of the Data Base in- the Context

of Global/Local Analysis and Design

The modifications made to TBOP to accomodate a global/local analysis strategy are
described in this appendix. Although the implementation of these new capabilities share
several subroutines with TBOP, it is run as a separate program called TBOPGL. The
additional information required for the implementation of the new capabilities is stored
in different libraries that contain either new datasets or datasets that have already been
documented in Refs. [27,40]. Consequently, only the new libraries and datasets are
described in this Appendix. This description is followed by a discussion of the new

processors that have been developed.
C.1 New Libraries and New Datasets

The organization of the libraries is shown in Fig. C.1. As indicated in this figure,
the database now includes a master library and several sets of two libraries. Each set
contains the information concerning either a model or an interpolation region. In this
figure, the generic name for the file that contains the data base is “EX. This is the only
part of the filenames that can changed. For example, if “EX” is changed for “TEST",
then TBOPGL will expect the data concerning the global model to be in libraries named
“TEST1.LO1” and “TEST1.L02”. Note that the filenames of the libraries must be in
capital letters. Among all the libraries required by TBOPGL, the ones that contain the
information concerning the interpolation regions are those that require the most input
from the user. All the other libraries are either identical to those required by TBOP or
automatically set up by TBOPGL.

The master library shown at the top of Fig. C.1 contains the information related
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to the optimization problem. The datasets stored in this library are listed in Table C.1.
As indicated in this table, the datasets that define the design variables, the constraints,
the objective functions, as well as the values of the constraints and their gradients are
all stored in the master library. Moreover, this libra;'y also contains the information
concerning the coordination work that must be performed between the global and local
models following a move in the design space. It is important to remember that this is
the only library from which TB20 reads data before calling the optimization program.

The data concerning the finite element analysis and the optimization problem of each
model, being global or local, are defined using 2 libraries. As already explained in Ref.
[27], the reason for using two libraries is to avoid using the *PACK directive to delete
the information that has become obsolete following a move in the design space. Except
for few datasets that are automatically installed by TBOPGL, this library contains the
same datasets that are contained in the two libraries used by TBOP to define the finite
element model and the optimization problem.

Finally, each local model has several sets of two libraries associated with it. They
contain the information necessary for the interpolation of the static displacement fields
from the global model to the local model. The ;'eason for using several sets of two
libraries, rather than only one set, is to allow TBOPGL to design models that contain
several interpolation regions which necessitate the utilization of as many spline matrices.
For example, consider the design of a stiffened panel where one of the skin-stiffener
intersections must be studied using a local model. In this case, the skin and the stiffener
contained in the local model are defined using separate interpolation regions. The inter-
polation of the displacement fields must be performed for each interpolation region and
each of these sets of libraries contains all the information required for these calculations.
The library whose name ends with “C.L0O1” contains the information concerning the

coarse mesh that discretizes the interpolation region and the library whose name ends
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EX.LO1: All the informadon

Master required by ADS to perform the
Library optimization
Global Local Loclal
Model Model 1 Model (j-1)
EX1.101 EX2.L01 EXj.L01
EX1.L02 EX21.02 EXj.L02

A

Interpolaton  Interpolation Interpolation
region 1 region 2 region k

EX21R.L01 | | EX22R.10O1 EX2kR.101
EX21CL01 | | EX22C.LO01 |~ | EX2kC.LO1

For each local
model

Contains the information
that Testbed

needs to perform the
analysis of each model.

Fig. C.1 - Organization of the Libraries.
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with “R.LO1* contains the information conceming the refined mesh that discretizes the
same region. The datasets contained in each library are listed in Tables C.2 and C.3. In
these tables, the datasets indicated as input datasets must be provided by the user. Also,
the dimensions of several datasets are indicated at thc' end of the description of their

content.

C.2 New Processors

The implementation of the global/local analysis and design procedure has also re-
quired the development of two new processors. The first new processor developed is
called MISC. This processor realizes two different operations. The first operation con-
sists of extracting, from a nodal solution vector corresponding to the global model, the
components associated with a specific interpolation region. This operation is required
twice for every design iteradon. It must first be performed after the exact analysis of
the global model to extract, from the static displacement solution, the components cor-
responding to the nodes belonging to each interpolation region. Each of these vectors is
then processed by INTS [16], the processor in charge of computing the spline interpola-
tion required to the generation of refined displacement fields. The same operation must
also be performed during the computation of the constraint derivatives with respect to
the design variables. For each design variable, the static displacements corresponding to
a perturbed design must be extracted from the global nodal solution and separate nodal
vectors must be created for each interpolation region. This is required for the calculation
of the term ~K, ;4% in Eq. 6.4.

The second operation realized by the processor MISC consists of forming nonzero
boundary condition vectors for each local model. This operation follows the extraction
operation described above. It consists of assembling the total vector of nonzero boundary

conditions for each local model. This is accomplished by reading the refined vectors of
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boundary conditions generated by INTS for each interpolation region.

The second new processor is called CRDN. CRDN sets up and realizes the coordina-
tion work that must be performed between the different models following a move in the
design space. It is first called to set up the coordination work. This initial step consists
of specifying what characteristics of a model must be updated when the value of a design
variable defined in another model is changed. Secondly, CRDN is also called by the
procedure des_ana_iter to realize the coordination work. This call occurs immediately
after a new design point has been computed by the optimizer.

The global/local analysis and dcsigh strategy has also been built using CLAMP
procedures. Two of these procedures implement the iterative scheme required for the
calculation of an optimal design. Two others perform the calculation of the quantities
required for the computation of the constraints and their derivatives. The same procedures
already described in Chapter 3 and in Ref. 27 are used here. Only minor changes have
been made to accomodate multiple models and compute the term -K;,, 4%« of Eq. 6.4.
These procedures will consequently not be discussed here.

An example of a runstream that can be used to perform the global/local analysis and
design of a structural model is shown in Fig. C.2. The runstream corresponds to the
example presented in Section 6.3.1. In-line documentation that details the steps that are

performed by each block of commands have been added to the runstream.
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Table C.1 - Datasets Stored in Master Library.

Dataset Name

Content

ADSRTN.1.1
ADS.PMTR.1.1
OBJ.FCN.im.1
DESN.VARS.im.1
BUCK.CONS.im.1

BCON.EVAL.im.1

DISP.CONS.im.1
DCON.EVAL.im.1
PSTR.CONS.im.1
PCON.EVAL.im.1

COOR.DINA. from_model. to_model

Variable info returned by ADS

Tables wk and iwk returned by ADS
Definition of the objective function

for model im

Definition of the design variables

for model im

Definition of the buckling constraints
imposed on model im

Values of the buckling constraints

and gradients of the computed eigenvalues
for model im

Definition of the displacement constraints
imposed on model im

Values and gradients of the displacement
constraints for model im

Definition of the point strain constraints
imposed on model im

Values and gradients of the point strain
constraints for model im

Definition of the coordination work that
must be performed between model
from_mode! and model to_model
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Table C.2 — Datasets Corresponding to the Coarse Mesh
for Each Interpolation Region (...C.L01).

Dataset Name

Content

JLOC.BTAB.2.5
(input)

ALTR.BTAB.2.4
GLOB.NODE.1.1
(input)

SPLI.*.1
STAT.DISP.1.1

APPL.MOTI.8.idv

The coordinates of the nodes mapped onto a
2D plane surface. Node | is located at the
origin of the coordinate frame (nncstx3).
The orientaton of the reference frame with
respect to the global reference framet

Node numbers in the global model (nncs)

All the datasets generated by the processor SPLN
Static displacements of the nodes contained in this
interpolation region extracted from the static response
computed with the global model (nncsx6).

where idv represents the design variable number.
Static displacements of the nodes contained in this
interpolation region extracted from the static response
computed with the global model and corresponding
to a configuration where the idv design variable

has been perturbed (nncsx6).

tnncs represents the number of nodes in the coarse mesh discretizing the interpolation
region. Similarly, nnrs represents the number of nodes in the refined mesh discretizing

the interpolation region.

! This dataset is not actually used. The processors SPLN and INTS check for the

occurrence of this dataset in the library but, in our case, the information that it contains

is not actually read.
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Table C.3 - Datasets Corresponding to the Refined Mesh

for Each Interpolation Region (...R.L01).

Dataset Name

Content

JLOC.BTAB.2.5
(input)

BOUN.NODE.1.1
(input)

LOCA.NODE.1.1
(input)

JDF1.BTAB.1.8

APPLMOTIL1.1

APPL.MOTIL.9.idv

The coordinates of the nodes mapped onto a

2D plane surface. Node 1 is located at the

origin of the coordinate frame (nnrsx3).

Nodes located on the boundary of the local model.
The node numbers correspond to the numbering used
in the local model. This information is used to

build the applied motion dataset for the local model
(number of nodes on the boundary of the interpolation
region).

Nodes located on the boundary of the local model.
The node numbers correspond to the numbering used
in the interpolation region. This information is used
to build the applied motion dataset for the local model
(number of nodes on the boundary of the interpolation
region).

Number of nodes contained in the interpolation region
and the number of degrees of freedom at each node. This
information is used to build the applied motion
dataset for the local model

Boundary conditions that must be applied at the
boundary of the interpolation region. This dataset is
used to form the applied motion dataset for the

local model (nnrsx6).

where idv represents the design variable number.
Refined static displacement field for this

interpolation region The original displacement field
corresponds to the the static response

computed with the global model and corresponding

to a configuration where the idv design variable

has been perturbed (nnrsx6).
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cd /scr/gendron

cp /csm/prc/proclib.gal proclib.aug
chmod u+w proclib.aug

/bin/time testbed << \+EDIx

*set echo off

Assume only 1 library procedure is used.
all the procedures must have different names!!!

;open 28 proclib.aug

*open 1 EX3.L01 /new . Must use capital letters for
all library names
This is the master library, it contains:
Design variables
Constraints
ADS parameters
. Coordination
*set plib = 28
*define/a filename=’EX3’ . Capital letters
The following information is model independent

*add ’/usr/ul/gendron/expe/branch-on_info.prc’
*add ’/usr/ul/gendron/expe/des_ana iter.prc’
*add ’/usr/ul/gendron/expe/analysis.prc’

*add °’/usr/ul/gendron/expe/derivative.prc’

;def/i numb_models = 2 . number of local models is assumed
. to be = to numb.models - 1.
*define/i nosm[1:2] == 0,1 . An array that indicates the

Number Of SubModels

associated with each local model.
Dimension: number of models

First component goes with the global model
which does not have any

submodels associated with it
(Consequently, first component always 0)

Assume library names are <filename>//<im>.101
and <filename>//<im>.102,
where <filename>//<im>.101 and
<filename>//<im>.102 contain the

. information regarding model <im>

*add ’/usr/ui/gendron/expe/pwholeg.data’

*add ’/usr/ul/gendron/expe/pwhole%.data’

sdefine/a filename=’EX3’ . Capital letters
*define/i maxiter=10

Fig. C.2 - Runstream Used for Global/Local Analysis and Design.
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Control of ADS

*xdef/i strat=9 . Strategy number

*def/i opt=5 . Optimization algorithm

*def/i oned=7 . 1D search algorithm-

*def/i print=3552 . Printing index

*def/i ndv=0 . Temporarily (Computed by DDVR)
*def/i ncon=0 . Temporarily (Computed by TB20)
*put 1 ADS.RTN.1.1 ! Capital letters

«put 1 ’ADS.PMTR.1.1’
*find dataset 1 ADS.PMTR.1.1 /seq=es_idss

*m2g /name==ndv /typesi 1 <es_idss> PARAM.1
*m2g /name==ncon /type=i 1 <es_idss> PARAM.2
*m2g /name==strat /type=i 1 <es_idss> PARAM.3
*»m2g /name==opt /type=i 1 <es_idss> PARAM.4
*m2g /name==oned /type=i 1 <es_idss> PARAM.5

1 <es_idss> PARAM.6

*m2g /name==print /type=i
. libraries containing the information regarding model 1

The following information is model dependent

;close 1
*open 1 EX31.L01 /new
*open 2 EX31.L02 /new

*define/f load_uf1]=0.0
*define/f load_v[1]=10000.0e+00
*define/f load_w[1]==0.0e+00
*define/i set_u[1]==0
xdefine/i set_v[1]==1

*define/i set_w[1]==

xdefine/i fin diff[1]==0
*define/i ntel[1]== 1
*define/i nsubl[1]==

*def/i imp_disp[1]==1

[xqt opti

load.Tatio

initialize 1di=1 nodes=175,316:325:1
end

stop

Fig. C.2 - (Cont’d).
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[xqt tab

*call MESH_JLOCG
=call BNDYG

[xqt AUS

TABLE(NI=16,nj=1): OMB DATA 1 1 . Table of mat.

I=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
J=1: 10.0e+06 0.3 10.0e+06 3.8462e+06 3.8462e+06
3.8462e+06 .0 .0 1.55e-05 >

.01330 .01270 0.01355 0.01184 0.003386 0.01355

TABLE (NI=3,NJ=1,itype=0): SUB LAM 1 1
J=1.: 10.10 0.0

*open 3 EX321G.L01

[xqt dcu

copy 1 3 JLOC BTAB 2 5
stop

*close 3

[xqt bdlm

*put 1 BLD.LAM.1.1
build=1 using=1

stop

[xqt LAU

*call MESH_CONG

*call ES ( function = ’DEFINE FREEDOMS’; —-—
eS_proc = <es_proc>; —-—
es_name = <es.namel[1]>; ——
es_pars = <es_pars[1]> )
[xqt E

[xqt RSEQ

reset maxcon=75

[xqt TOPO

reset maxsub = 60000
reset lramap = 9000

[xqt AUS

sysvec: appl motion 1 1
*=call MOTIONG

pIop.

>

Fig. C.2 - (Cont’d).
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[xqt GPTI
ddvr

Defining design variables

dv=1 thickness sectionnumber=1 plynumber=] —-—
in= 0.01,5.0

save TZIRD.WCRD=1

end

Define the constraints

constraint

define buckling=1 eval=1 value=1.0
save THIRD_WORD=1

end

objective

defire weight rho=0.057 third_word=1
end

stop

don’t need kmap and amap in library 2
*delete 1 KMAP..*.=*
*delete 1 AMAP..*.»*

[xqt DCU

copy 1 2

stop

*enable 1 KMAP..*.=*
*enable 1 AMAP..*. .=
xopen 2 EX321C.LO1
[xqt dcu

copy 1 2 ALTR BTAB 2 4
[xqt SPLN

RESET INLIB=2

RESET SLIB=2

RESET DEGREE=1

Fig. C.2 - (Cont’d).
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Setting up the spline interpolation

SURT 1 XLOC=1, YLCC=2, SYM=0
INPTT
BOUY 1
0.0,0.0,0.0 10.0,20.0,0.0
stop
*clcse 2
Weed to copy the definition of the
. cptimization problem in master library
*cpen 3 EX3.L01 . This is the master library
[xg= DCU
cogy 1 3 DESN VARS 11
copy 1 3 BUCK CONS 1 1
copy 1 3 BCON EVAL 11
cory 1 3 0BJ FCT 1 1

Yeed to close the libraries
corresponding To model 1
*clcse 1

aznd open the library
corresponding to model 2.

xopea 1 EX32.L01 /new
*open 2 EX32.L02 /new

xde£/i imp disp[2]==
*define/i set_uf[2]==1
*define/i set_v[2]==0
*define/i set_w[2]==0
*define/e load u{2]==0.0
*define/e load.v[2]==0.0
xdefine/e load_w[2]==0.0e+00
*define/i fin diff[2]==0
*define/i ntel[2]== 1
*define/i nsubl[2]==

[xqt opti

load _ratio
initialize 1di=1
end

stop

Fig. C.2 - (Cont’d).

205



{xqt tadb

*call MESH_JLOCL

*xcall BNDYL

[xqt AUS

TABLE(NI=16,nj=1): OMB DATA 1 1 . Table of material properties
I=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

J=1: 10.0e+06 0.3 10.0e+06 3.8462e+06 3.8462e+06 >

3.8462e+06 .0 .0 1.55e-05 > :

01230 .01270 0.01355 0.01184 0.003386 0.01353

TABLE (NI=3,NJ=1,itype=0): SUB LAM 1 1
J 1 10.10.0

xopen 3 EX321R.LO1

[xgt dcu

copy 1 3 JLOC BTAB 2 5
stop

xclose 3

[xct bdlm

*put 1 BLD.LAM.1.1

buildé=1 using=l

stop

[xqt LAU

*call MESH_CONL

*call ES ( function = ’DEFINE FREEDOMS’; --—
es_proc = <es_proc>; —— :
es_name = <es_name[1]>; ——
es_pars = <es_pars(1]> )
[xqt E

[xqt RSEQ

reset maxcon=75

[xqt TOPO

reset maxsub = 60000

reset lramap = 9000

[xqt opti

ddvr

dv=1 thickness sectionnumber=1 plynumber=1 in= 0.01,1.0
save THIRD_WORD=2

end

Fig. C.2 - (Cont’d).
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constraint

define pointstrain=! integ pt=9 -—-
valuelt=0.002 valueic=0.002 ——

value2t=0.002 value2c=0.002 valuel2=0.005 —-
type=EX97 group=1 --—

element=69

save THIRD_WORD=2

end

stop

. den’t need kmap and amap in library 2
*delete 1 KMAP..=.=
*delete 1 AMAP..* .=

[xqt DCU

copy 1 2

stop

*enable 1 KMAP..x*.=x
*enable 1 AMAP..x.=
*close 2

Need to copy the definition of the
. optimization problem in master library
*open 3 EX3.L01 . This is the master library
[xqt DCU B
copy 1 3 PSTR CONS 2 1
copy 1 3 PCON EVAL 2 1
stop

End of model dependent definitiomns

*close 3

*open 1 EX3.L01

. setting up the coordination problem
[xqt CRDN

initialize

from.model=1

tomodel=2

. model 1 model 2

dv=1 thickness sectionnumber=1 plynumber=1
save

end

stop

Fig. C.2 - (Cont’d).
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[xqt T320
initialize /modify

modify /itrmop=2 . itrmop=2
modify /itrmst=2 . Iitrmst=l

modify /iscal=0

modify /jtmax=50 . jtmax = 50

modify /delobj=0.01
modify /delstr=0.C1
modify /rmvimz=0.20
stecp

[xqt TB20

OPTIMIZE

Stop

Start the iterative process: Analysis <-> Design

*xcall des_ana.iter ( 1di = 2; ——
numb_moedels = <numb_mcdels>; —-

maxiter = <maxiter>; ——

filename = <filename>)

[xqt exit

\*EQ0I=

Fig. C.2 - (Concluded).
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